<table>
<thead>
<tr>
<th>137608 1. vydání</th>
<th>SUROVINY K VÝROBĚ VOJENSKÝCH VÝBUŠNIN IV. HEXOGEN, TRITOL, OKTOGEN A PENTRIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAVÁDÍ</td>
<td>STANAG 4022, Ed. 4</td>
</tr>
<tr>
<td></td>
<td>EXPLOSIVES, SPECIFICATION FOR RDX (HEXOGENE)</td>
</tr>
<tr>
<td></td>
<td>Technické podmínky výbušniny hexogenu (RDX)</td>
</tr>
<tr>
<td></td>
<td>STANAG 4023, Ed. 5</td>
</tr>
<tr>
<td></td>
<td>EXPLOSIVES, SPECIFICATION FOR PENTHRITE (PETN)</td>
</tr>
<tr>
<td></td>
<td>Technické podmínky výbušniny pentrit (PETN)</td>
</tr>
<tr>
<td></td>
<td>STANAG 4025, Ed. 3</td>
</tr>
<tr>
<td></td>
<td>SPECIFICATION FOR TNT (TOLITE) FOR DELIVERIES FROM ONE NATO NATION TO ANOTHER</td>
</tr>
<tr>
<td></td>
<td>Technické podmínky výbušniny tritolu (TNT) pro dodávky mezi členskými státy NATO</td>
</tr>
<tr>
<td></td>
<td>STANAG 4284, Ed. 1</td>
</tr>
<tr>
<td></td>
<td>HMX (OCTOGENE), PHYSICAL AND CHEMICAL REQUIREMENTS, SPECIFICATION FOR DELIVERIES FROM ONE NATO NATION TO ANOTHER</td>
</tr>
<tr>
<td></td>
<td>Technické podmínky výbušniny oktogenu (HMX) pro dodávky mezi členskými státy NATO</td>
</tr>
<tr>
<td>NAHRAZUJE</td>
<td>Tento standard nahrazuje kapitoly 7, 8, 11 a 16 v ČOS 137602, 3. vydání, Oprava 2</td>
</tr>
</tbody>
</table>

Praha 2020
(VOLNÁ STRANA)
ČESKÝ OBRANNÝ STANDARD

SUROVINY K VÝROBĚ VOJENSKÝCH VÝBUŠNIN IV. HEXOGEN, TRITOL, OKTOGEN A PENTRIT

Základem pro tvorbu tohoto standardu byly originály následujících dokumentů:

STANAG 4022, Ed. 4 EXPLOSIVES, SPECIFICATION FOR RDX (HEXOGENE)
Technické podmínky výbušniny hexogenu (RDX)

STANAG 4023, Ed. 5 EXPLOSIVES, SPECIFICATION FOR PENTHRITE (PETN)
Technické podmínky výbušniny pentrit (PETN)

STANAG 4025, Ed. 3 SPECIFICATION FOR TNT (TOLITE) FOR DELIVERIES FROM ONE NATO NATION TO ANOTHER
Technické podmínky výbušniny tritolu (TNT) pro dodávky mezi členskými státy NATO

STANAG 4284, Ed. 1 HMX (OCTOGENE), PHYSICAL AND CHEMICAL REQUIREMENTS, SPECIFICATION FOR DELIVERIES FROM ONE NATO NATION TO ANOTHER
Technické podmínky výbušniny oktogenu (HMX) pro dodávky mezi členskými státy NATO

© Úřad pro obrannou standardizaci, katalogizaci a státní ověřování jakosti

Praha 2020
<table>
<thead>
<tr>
<th>OBSAH</th>
<th>Strana</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Předmět standardu</td>
<td>5</td>
</tr>
<tr>
<td>2 Nahrazení standardů (norem)</td>
<td>5</td>
</tr>
<tr>
<td>3 Související dokumenty</td>
<td>5</td>
</tr>
<tr>
<td>4 Zpracovatel ČOS</td>
<td>5</td>
</tr>
<tr>
<td>5 Použité zkratky, značky a definice</td>
<td>5</td>
</tr>
<tr>
<td>5.1 Zkratky a značky</td>
<td>5</td>
</tr>
<tr>
<td>5.2 Definice</td>
<td>6</td>
</tr>
<tr>
<td>6 Hexogen</td>
<td>6</td>
</tr>
<tr>
<td>6.1 Všeobecné požadavky</td>
<td>6</td>
</tr>
<tr>
<td>6.2 Požadavky na kvalitu</td>
<td>7</td>
</tr>
<tr>
<td>6.3 Metody zkoušení</td>
<td>8</td>
</tr>
<tr>
<td>7 Tritol</td>
<td>20</td>
</tr>
<tr>
<td>7.1 Všeobecné požadavky</td>
<td>20</td>
</tr>
<tr>
<td>7.2 Požadavky na kvalitu</td>
<td>21</td>
</tr>
<tr>
<td>7.3 Metody zkoušení</td>
<td>22</td>
</tr>
<tr>
<td>8 Oktogen</td>
<td>30</td>
</tr>
<tr>
<td>8.1 Všeobecné požadavky</td>
<td>30</td>
</tr>
<tr>
<td>8.2 Požadavky na kvalitu</td>
<td>30</td>
</tr>
<tr>
<td>8.3 Metody zkoušení</td>
<td>32</td>
</tr>
<tr>
<td>9 Pentrit</td>
<td>53</td>
</tr>
<tr>
<td>9.1 Všeobecné požadavky</td>
<td>53</td>
</tr>
<tr>
<td>9.2 Požadavky na kvalitu</td>
<td>53</td>
</tr>
<tr>
<td>9.3 Metody zkoušení</td>
<td>54</td>
</tr>
</tbody>
</table>
1 Předmět standardu
ČOS 137608, 1. vydání, zavádí STANAG 4022, Ed. 4, STANAG 4023, Ed. 5, STANAG 4025, Ed. 3 a STANAG 4284, Ed. 1 do prostředí ČR. Standard stanovuje kvalitativní požadavky na výbušniny hexogen, oktogen, tritol a pentrit, určené pro dodávky mezi členskými státy NATO a uvádí jednotné metody zkoušek pro hodnocení jejich kvality.

2 Nahrazení standardů (norem)
Tento standard nahrazuje kapitoly 7, 8, 11 a 16 v ČOS 137602, 3. vydání, Oprava 2.

3 Související dokumenty
V tomto ČOS jsou normativní odkazy na následující citované dokumenty (celé nebo jejich části), které jsou nezbytné pro jeho použití. U odkazů na datované citované dokumenty platí tento dokument bez ohledu na to, zda existují novější vydání/edice tohoto dokumentu. U odkazů na nedatované dokumenty se používá pouze nejnovější vydání/edice dokumentu (včetně všech změn).

ČOS 137601 – ORGANIZACE A METODY SCHVALOVÁNÍ ZPŮSOBILOSTI VÝBUŠNIN PRO VOJENSKÉ ÚČELY
ČSN ISO 3310-1 – ZKUŠEBNÍ SÍTA – TECHNICKÉ POŽADAVKY A ZKOUŠENÍ – ČÁST 1: ZKUŠEBNÍ SÍTA Z KOVOVÉ TKANINY
MIL-STD-650 – EXPLOSIVE: SAMPLING, INSPECTION AND TESTING
STANAG 4556 – EXPLOSIVES: VACUUM STABILITY TEST

4 Zpracovatel ČOS
Vojenský technický ústav, s.p., odštěpný závod VTÚVM, Ing. Lumír Kučera.

5 Použité zkratky, značky a definice
5.1 Zkratky a značky

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Název v originálu</th>
<th>Český název</th>
</tr>
</thead>
<tbody>
<tr>
<td>ČOS</td>
<td></td>
<td>Český obranný standard</td>
</tr>
<tr>
<td>ČR</td>
<td></td>
<td>Česká republika</td>
</tr>
<tr>
<td>DAD</td>
<td>Diode-Array Detector</td>
<td>detektor s diodovým polem</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
<td>diferenciální snímací kalorimetrie</td>
</tr>
<tr>
<td>HMX</td>
<td></td>
<td>Oktogen (cyklotetramethylentetranitramin)</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-Performance Liquid Chromatography</td>
<td>vysokoučinná kapalinová chromatografie</td>
</tr>
<tr>
<td>Zkratka</td>
<td>Název v originálu</td>
<td>Český název</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>IČ</td>
<td>Low Angle Laser Light</td>
<td>infračervený</td>
</tr>
<tr>
<td>LALLS</td>
<td>Scattering</td>
<td>rozptýl laserového paprsku při malém úhlu, laserová difrakce</td>
</tr>
<tr>
<td>meq</td>
<td></td>
<td>miliekvivalent</td>
</tr>
<tr>
<td>MIL-STD</td>
<td>Military Standard</td>
<td>vojenský standard USA</td>
</tr>
<tr>
<td>NATO</td>
<td>North Atlantic Treaty</td>
<td>Organizace Severoatlantické smlouvy</td>
</tr>
<tr>
<td>p.a.</td>
<td></td>
<td>pro analýzu</td>
</tr>
<tr>
<td>PETN</td>
<td></td>
<td>Pentrit, pentaerythritoltetranitrat</td>
</tr>
<tr>
<td>RDX</td>
<td></td>
<td>Hexogen, cyklotrimetylentritamin</td>
</tr>
<tr>
<td>STANAG</td>
<td>NATO Standardization</td>
<td>Standardizační dohoda NATO</td>
</tr>
<tr>
<td></td>
<td>Agreement</td>
<td></td>
</tr>
<tr>
<td>TNT</td>
<td></td>
<td>Tritol, trinitrotoluen</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
<td>ultrafialový</td>
</tr>
<tr>
<td>UV/VIS</td>
<td>Ultraviolet/Visible</td>
<td>ultrafialová/viditelná oblast spektra</td>
</tr>
<tr>
<td>VTÚVM</td>
<td></td>
<td>Vojenský technický ústav výzbroje a munice</td>
</tr>
</tbody>
</table>

5.2 Definice

Níže uvedená definice je specifická pro tento standard a je zařazena k usnadnění jeho použití.

výrobní série Při kontinuálním způsobu výroby je výrobní série tvořena celkovým množstvím produktu nabízeným/předkládaným k převzetí v danou dobu. Při diskontinuální výrobě může být výrobní série tvořena množstvím produktu, buď vyrobeným v jedné šarži, nebo vzniklým homogenizací několika šarží vyrobených jedným výrobcem za stejných provozních podmínek.

6 Hexogen

6.1 Všeobecné požadavky

Účelem této kapitoly je stanovit takové požadavky na vlastnosti hexogenu (RDX, cyklotrimetylentritaminu), které zajistí jeho použitelnost pro vojenské účely, a zároveň tak poskytnout vhodnou základnu pro jeho dodávky a certifikaci v rámci NATO.

Hexogen je určen pro použití ve střelivinách a především jako trhavina. Hexogen, určený pro vojenské účely, musí splňovat kvalitativní požadavky uvedené v čl. 6.2 tohoto standardu, které jsou stanovovány postupy uvedenými v čl. 6.3. V protokolu o zkouškách musí být uvedeny výsledky zkoušek a použité metody zkoušení (vzorový protokol lze nalézt ve STANAG 4022, Annex C).
V průběhu zpracování a zkoušení hexogenu a při manipulaci s ním musí být dodržována bezpečnostní opatření k ochraně osob před úrazem, požárem nebo výbuchem a k zamezení škod na zařízení a výrobních prostorech.

Strukturní vzorec hexogenu je uveden na obrázku 1.

OBRÁZEK 1 − Strukturní vzorec hexogenu

Tato kapitola vyžaduje použití látek a zkušebních postupů, které mohou ohrozit lidské zdraví. Musí být proto přijata odpovídající bezpečnostní opatření, která tato rizika snižuje na nejmenší možnou míru. Je nezbytné se řídit informacemi uvedenými v bezpečnostních listech a požadavky zákonných předpisů.

6.2 Požadavky na kvalitu

Na základě výrobního procesu jsou definovány dva typy hexogenu:

- Typ A – vyrobený s použitím kyseliny dusičné.
- Typ B – vyrobený s použitím acetanhydridu.

Každý nový nebo modifikovaný výrobní proces musí být zaznamenán a údaje o něm musí být na vyžádání poskytnuty v dohodnutém rozsahu odběrateli. Takto vyrobený hexogen lze předat odběrateli až po odsouhlasení změn z jeho strany.

Hexogen musí mít formu bílého krystalického prášku, bez jakékoliv zjevné barevné nesourodosti nebo viditelných cizorodých látek. Na vyžádání odběratele musí být poskytnuty mikrofotografie zobrazující tvar a povrch krystalů.

Požadavky na fyzikálně-chemické vlastnosti jednotlivých typů hexogenu jsou uvedeny v tabulce 1.

Pro účely zkoušek se z každé výrobní série náhodně odebere reprezentativní vzorek o hmotnosti minimálně 200 g postupem odsouhlaseným odběratelem.

Hexogen Typ B je velmi heterogenní materiál s nečistotami oktogenu (HMX) přítomnými v poměrně značném množství ve formě relativně jemných krystalů. Typ A je rovněž heterogenní, ale problém není tak závažný z důvodu nižší koncentrace HMX.

Velká pozornost musí být věnována zajištění reprezentativnosti vzorků odebíraných pro analýzu.

Pokud je vzorek vlhký, musí se přesušit v tenké vrstvě při (60 ± 5) °C do konstantní hmotnosti.
TABULKA 1 – Požadavky na fyzikálně-chemické vlastnosti hexogenu

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Požadovaná hodnota</th>
<th>Metoda zkoušení (viz čl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obsah HMX [hm. %]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ A</td>
<td>typ. 1</td>
<td>max. 17 min. 4</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obsah RDX + HMX [hm. %]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ A</td>
<td></td>
<td>min. 99</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td>min. 99</td>
</tr>
<tr>
<td>Bod tání [°C]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ A</td>
<td></td>
<td>min. 200</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td>min. 187</td>
</tr>
<tr>
<td>Obsah látek nerozpustných v acetonu [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ A</td>
<td></td>
<td>max. 0,05</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td>max. 0,05</td>
</tr>
<tr>
<td>Obsah anorganických látek (popela) [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ A</td>
<td></td>
<td>max. 0,03</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td>max. 0,03</td>
</tr>
<tr>
<td>Kyselost [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ A</td>
<td></td>
<td>max. 0,01</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td>max. 0,05</td>
</tr>
<tr>
<td>Typ A</td>
<td></td>
<td>(jako HNO₃)</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td>(jako CH₃COOH)</td>
</tr>
<tr>
<td>Obraz pískových částic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ A</td>
<td></td>
<td>max. 5 částic / 50 g</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td>max. 5 částic / 50 g</td>
</tr>
<tr>
<td>Typ A</td>
<td></td>
<td>0 částic / 50 g</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td>0 částic / 50 g</td>
</tr>
<tr>
<td>Citlivost k nárazu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ A</td>
<td></td>
<td>viz čl. 6.3.8</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td>viz čl. 6.3.8</td>
</tr>
<tr>
<td>Vakuový stabilitní test při 120 °C po dobu 24 hodin a) [ml/g]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ A</td>
<td></td>
<td>< 0,25</td>
</tr>
<tr>
<td>Typ B</td>
<td></td>
<td>< 0,25</td>
</tr>
<tr>
<td>Zrnitost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odběratele</td>
<td></td>
<td>dle požadavků odběratele</td>
</tr>
<tr>
<td>Odběratele</td>
<td></td>
<td>dle požadavků odběratele</td>
</tr>
</tbody>
</table>

a) Od požadavku na provedení vakuového stabilitního testu může být na základě rozhodnutí odběratele upuštěno.

6.3 Metody zkoušení

6.3.1 Stanovení obsahu oktogenu v hexogenu (metoda HPLC)

Podmínky metody HPLC se liší v závislosti na tom, zda zkoušený vzorek RDX je Typ A nebo Typ B. Z důvodu značné velikosti vzorku potřebného pro měření nízkých úrovní přítomnosti HMX není níže popsaná metoda vhodná pro přímou kvantifikaci RDX.

6.3.1.1 Chemikálie a činidla

Rozpouštědla (např. acetonitril, aceton, metanol, voda), o čistotě pro HPLC.

HMX vhodný k použití jako základní analytický standard, o čistotě větší než 99,5 %.

Může být připraven opakovanou rekrystalizací průmyslové výráběného HMX (přednostně Typ III) z acetonitrilu. Celková plocha píků nečistot absorbujících v UV oblasti v kalibračním standardu HMX nesmí překročit 0,5 % plochy píku HMX při vlnové délce 230 nm (bez plochy píku rozpouštědla).

RDX vhodný k použití jako základní analytický standard, o čistotě větší než 99,5 %.

Může být připraven opakovanou rekrystalizací průmyslové výráběného RDX (přednostně Typ A) z acetonitrilu. Celková plocha píků nečistot absorbujících v UV oblasti v kalibračním standardu RDX nesmí překročit 0,5 % plochy píku RDX při vlnové délce 230 nm (bez plochy píku rozpouštědla).
Vhodný vnitřní standard (např. dietylftalát nebo etylcentralit), o čistotě p.a.

6.3.1.2 Přístroje a zařízení
HPLC chromatograf s dávkovací smykou vhodné velikosti (např. 5 μl), detekčním systémem vybaveným UV detektořem a integrátorem nebo počítačovým systémem sběru dat.

Analytická kolona, jako je např. RESTEK Ultra Cyano (CN) s velikostí částic 5 μm, vnitřním průměrem 4,6 mm a délkou 250 mm, nebo ekvivalentní.

Skleněné odměrné baňky třídy A o velikosti 10 ml, 25 ml a 100 ml. Pro vynechání kroku ředění při přípravě vzorku jsou povoleny odměrné baňky o větším objemu.

Analytické váhy.

6.3.1.3 Vzorové podmínky HPLC
Níže uvedené parametry představují jedno možné přístrojové uspořádání, které bylo ověřeno v praxi. Mohou být použity i jiné podmínky, musí však být dosaženo oddělení píků rozpouštědla, vnitřního standardu, HMX a RDX na základní (nulové) linii.

Eluční činidlo: acetonitril/voda/metanol 30/60/10 (objemově).
Rychlost průtoku: 1,0 ml/min.
Objem nástřiku: 5 μl.
Vlnová délka UV detektoru: 230 nm nebo 254 nm.
Ohřev kolony: 30 ºC.

6.3.1.4 Příprava kalibračních standardů RDX/HMX
Musí se připravit tři nebo více kalibračních standardů překlenujících předpokládaný rozsah koncentrací RDX/HMX ve vzorku. Pro vzorky RDX Typ A, připravené v souladu s níže uvedeným postupem, se doporučují koncentrace přibližně odpovídající údajům uvedeným v tabulce 2 a pro vzorky RDX Typ B koncentrace uvedené v tabulce 3.

TABULKA 2 – Složení standardů RDX/HMX pro RDX Typ A

<table>
<thead>
<tr>
<th>RDX</th>
<th>HMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koncentrace [mg/ml]</td>
<td>Hmotnost [g] v 25 ml</td>
</tr>
<tr>
<td>5,2</td>
<td>0,130</td>
</tr>
<tr>
<td>5,0</td>
<td>0,125</td>
</tr>
<tr>
<td>4,8</td>
<td>0,120</td>
</tr>
</tbody>
</table>
Zásobní standardní roztok HMX se připraví tak, že do 100ml odměrné baňky se s přesností na 0,1 mg naváží přibližně 50 mg HMX a 50 mg vnitřního standardu, vše se rozpustí v acetonitrilu, doplní se dalším acetonitrilem po rysku a dobře promíchá.

Jednotlivé kalibrační standardy se připraví vložením příslušného množství RDX a HMX do 25ml odměrné baňky pro Typ A a 100ml odměrné baňky pro Typ B. RDX je možno do baňky buď přímo navážit, nebo převést postupným ředěním zásobního roztoku. Z důvodu nízkých koncentrací HMX se dává přednost postupnému ředění.

Do každé baňky se přidá přibližně 10 ml až 15 ml acetonitrilu a míchá se až do úplného rozpuštění RDX a do rovnoměrného promíchání roztoku. K tomu je možno využít ultrazvukovou lázeň. Před doplněním na konečný objem je však třeba vzorky nechat vychladit na teplotu okolí.

Odměrné baňky se doplní po rysku acetonitřelem.

6.3.1.5 Příprava vzorků

Do čisté 100ml odměrné baňky se s přesností na 0,1 mg naváží přibližně 500 mg suchého vzorku. Do téže odměrné baňky se s přesností na 0,1 mg naváží přibližně 50 mg vnitřního standardu. Každý vzorek se připraví trojmo.

Přidá se přibližně 60 ml až 75 ml acetonitrilu a míchá se až do úplného rozpuštění vzorku a do rovnoměrného promíchání roztoku. K tomu je možno využít ultrazvukovou lázeň. Před doplněním na konečný objem je však třeba vzorky nechat vychladit na teplotu okolí.

Odměrná baňka se doplní po rysku acetonitřelem.

Před vložením do chromatografu se vzorek přefiltruje přes filtr s velikostí otvorů 0,45μm.

U RDX Typ B se přeneše 1 ml přefiltrovaného roztoku do čisté 10ml odměrné baňky a doplní se po rysku acetonitřelem. Před vlastní analýzou musí být vzorek rovnoměrně promíchán.

6.3.1.6 Postup zkoušky

Do chromatografu se pomocí injekční stříkačky nebo automatického vzorkovače předloží roztoky standardu a vzorku – doporučuje se objem nástřiku 5 μl. Všechny nástřiky musí být realizovány za stejných provozních podmínek. Pro zajištění reprodukovatelnosti u chromatografického systému se musí provést dostatečný počet
nástříků každého roztoku. Pro pracovní kalibrační standardy a vzorky se doporučují nejméně dva nástříky. Před měřením a po měření vzorků s intervalem mezi kalibrací a verifikací nepřesahujícím šest hodin se má provést srovnávací analýza kontrolního kalibračního standardu.

V souladu s návodem k použití se spustí chromatografický systém za podmíněk uvedených v čl. 6.3.1.3. Chromatograf se nechá ustát po dobu nejméně 10 min až 20 min nebo do okamžiku, kdy jsou výstupní údaje UV detektoru a průtok elučního činidla neměnné.

Po ustálení systému se dávkovací (vzorkovací) smyčka nástřikového systému naplní poměrnou částí vzorku nebo standardu a spustí se měření.

6.3.1.7 Výpočet odezového faktoru pro HMX (RF_{HMX})

Za použití systému sběru dat se vypočítá plochy píků HMX a vnitřního standardu pro všechny nástříky kalibračního standardu a vzorku a výsledky se zprůměrují. Výsledky se u jednotlivých nástříků nemají vzájemně lišit o více než 1 %. Jestliže toto kritérium není splněno, vzorek má být vyřazen a pro analýzu se má připravit nový vzorek.

Odezový faktor \(RF_{HMX} \) se stanoví ze vztahu:

\[
RF_{HMX} = \frac{w_{H-C} \times A_{IS-C}}{w_{IS-C} \times A_{H-C}}
\]

6.3.1.8 Výpočet a uvádění výsledků zkoušky

Procentuální obsah HMX v každém vzorku se stanoví ze vztahu:

\[
\% HMX = \frac{A_H \times w_{IS} \times RF_{HMX} \times 100}{A_{IS} \times w}
\]

Do protokolu se uvedou:

a) chromatografické podmínky a výsledky analýz vzorků,
b) procentuální obsahy HMX u každého ze tří připravených vzorků a jejich průměrná hodnota (na dvě desetinná místa).
6.3.2 Stanovení obsahu hexogenu (metoda HPLC)
6.3.2.1 Chemikálie a činidla

Rozpouštědla (např. acetonitril, aceton, metanol, voda), o čistotě pro HPLC.

RDX vhodný k použití jako základní analytický standard, o čistotě větší než 99,5 % (viz čl. 6.3.1.1).

Vhodný vnitřní standard (např. dietylftalát nebo etylcentralit), o čistotě p.a.

6.3.2.2 Přístroje a zařízení

HPLC chromatograf s dávkovací smyčkou vhodné velikosti (např. 5 μl), detekčním systémem vybaveným UV detektorem a integrátorem nebo počítačovým systémem sběru a zpracování.

Analytická kolona, jako je např. RESTEK Ultra Cyano (CN) s velikostí částic 5 μm, vnitřním průměrem 4,6 mm a délkou 250 mm, nebo ekvivalentní.

Skleněné odměrné baňky třídy A o velikosti 10 ml, 25 ml a 100 ml. Pro vynechání kroku ředění při přípravě vzorku jsou povoleny odměrné baňky o větším objemu.

Analytické váhy.

6.3.2.3 Vzorové podmínky HPLC

Analytické podmínky uvedené v čl. 6.3.1.3 jsou použitelné i pro tuto metodu.

6.3.2.4 Příprava kalibračních standardů RDX/HMX

Musí se připravit tři nebo více kalibračních standardů překlenujících předpokládaný rozsah koncentrací RDX ve vzorku. Jednotlivé kalibrační standardy se připraví vložením příslušného množství RDX do 100 ml odměrné baňky, ke kterému se přidá stejně množství vnitřního standardu. Mohou se použít menší (může být nezbytné další zředění) nebo větší odměrné baňky za splnění podmínky, že nedojde ke snížení přesnosti či shodnosti operace navážování. Při větších navážkách se může použít ředění koncentrovanějších standardních roztoků.

Do každé baňky se přidá přibližně 10 ml až 15 ml acetonitrilu a míchá se až do úplného rozpuštění RDX a do rovnoměrného promíchání roztoku. K tomu je možno využít ultrazvukovou lázeň. Před doplněním na konečný objem je však třeba vzorky nechat vychladit na teplotu okolí.

Odměrné baňky se doplní po rysku acetonitrilem.

U RDX Typ B mohou být získány procentuální obsahy RDX i HMX za podmínky, že kalibrační standardy obsahují obě látky v množstvích překlenujících předpokládané rozsahy koncentrací a je dosaženo dostatečné rozlišení píků. Výpočty odevzového faktoru \(RF_{HMX} \) a procentuálního obsahu HMX by se provedly analogicky k výpočtům u RDX.

Přípraví se samostatný kontrolní kalibrační standard o koncentraci rovnající se přibližně střední koncentraci kalibračních standardů. Má obsahovat jak RDX, tak HMX, aby se zajistilo, že obě tyto látky budou dostatečně rozlišeny pro integraci píku RDX.
6.3.2.5 Příprava vzorků

Do čisté 100ml odměrné baňky se s přesností na 0,1 mg naváží přibližně 500 mg suchého RDX a 200 mg vnitřního standardu. Každý vzorek se připraví trojmě.

Přidá se přibližně 60 ml až 75 ml acetonitrilu a míchá se až do úplného rozpuštění vzorku a do rovnoměrného promíchání roztoku. K tomu je možno využít ultrazvukovou lázně. Před doplněním na konečný objem je však třeba vzorky nechat vychladit na teplotu okolí.

Odměrná baňka se doplní po rysku acetonitrilem.

Před vložením do chromatografu se vzorek přefiltruje přes filtr s velikostí otvorů 0,45μm.

Poté se přenese 1 ml přefiltrovaného roztoku do čisté 10ml odměrné baňky a doplní se po rysku acetonitrilem. Před vlastní analýzou musí být vzorek rovnoměrně promíchán.

6.3.2.6 Postup zkoušky

Do chromatografu se pomocí injekční stříkačky nebo automatického vzorkovače předloží roztoky standardu a vzorku – doporučuje se objem nástřiku 5 μl. Všechny nástřiky musí být realizovány za stejných provozních podmínek. Pro zajištění reprodukovatelnosti u chromatografického systému se musí provést dostatečný počet nástřiků každého roztoku. Pro pracovní kalibrační standardy a vzorky se doporučují nejméně dva nástřiky. Před měřením a po měření vzorků s intervalem mezi kalibrací a verifikací nepřesahujícím šest hodin se má provést srovnávací analýza kontrolního kalibračního standardu.

V souladu s návodem k použití se spustí chromatografický systém za podmínek uvedených v čl. 6.3.2.3. Chromatograf se nechá ustálit po dobu nejméně 10 min až 20 min nebo do okamžiku, kdy jsou výstupní údaje UV detektoru a průtok elučního činidla neměnné.

S využitím systému sběru a zpracování se vypočítají plochy píků získaných z chromatogramu pro RDX a vnitřní standard v kalibračních standardech a vzorcích.

6.3.2.7 Výpočet odsezvového faktoru pro RDX (RFRDX)

Za použití systému sběru a zpracování se vypočítají plochy píků RDX a vnitřního standardu pro všechny nástřiky kalibračního standardu a vzorku a výsledky se zprůměrují. Výsledky se u jednotlivých nástříků nemají vzájemně lišit o více než 1 %. Jestliže toto kritérium není splněno, vzorek má být vyřazen a pro analýzu se má připravit nový vzorek.

Odezvový faktor 𝑅𝑅F RDX se stanoví ze vztahu:

\[RF_{RDX} = \frac{w_{RC} \times A_{IS-C}}{w_{IS-C} \times A_{RC}} \] \hspace{1cm} (3),

kde \(w_{RC} \) - hmotnost čistého RDX v kalibračním standardu [g],
\(w_{IS-C} \) - hmotnost vnitřního standardu v kalibračním standardu [g].
A_{R,C} - průměrná plocha píku RDX z nástřiků roztoku kalibračního standardu [mAU·min],
A_{IS,C} - průměrná plocha píku vnitřního standardu z nástřiků roztoku kalibračního standardu [mAU·min].

6.3.2.8 Výpočet a uvádění výsledků zkoušky

Procentuální obsah RDX v každém vzorku se stanoví ze vztahu:

% RDX = \frac{A_R \times w_{IS} \times RF_{RDX}}{A_{IS} \times w} \times 100 \tag{4}

kde

RF_{RDX} - odezvový faktor pro RDX, viz rovnice (3) [1],
A_R - plocha píku RDX, průměr z nástřiků [mAU·min],
A_{IS} - plocha píku vnitřního standardu, průměr z nástříků [mAU·min],
w_{IS} - hmotnost vnitřního standardu [mg],
w - navážka vzorku [mg].

Do protokolu se uvádí:

a) chromatografické podmínky a výsledky analýz vzorků,
b) procentuální obsahy RDX u každého ze tří připravených vzorků a jejich průměrná hodnota (na dvě desetinná místa),
c) obsah RDX + HMX, který je součtem průměrných hodnot stanovení procentuálního obsahu RDX (viz bod b) výše) a HMX (viz bod b) v čl. 6.3.1.8).

6.3.3 Stanovení bodu tání

Bod tání RDX může být stanoven buď diferenciální snímací kalorimetrií (DSC) v kapilární trubičce, nebo ve Fischer-Johnsově přístroji s Kochlerovým blokem (nebo v ekvivalentním přístroji). Použitá metoda musí být uvedena v protokolu o zkoušce. Při použití DSC musí být přiložen termogram.

6.3.3.1 Metoda DSC

6.3.3.1.1 Chemikálie a činidla

Inертní referenční materiál, který nesmí být v použitém teplotním rozsahu tepelně aktivní. Pro většinu aplikací se osvědčil Al_2O_3. U novějších přístrojů s modifikovaným uspořádáním měřicí části může však být použití inertního referenčního materiálu kontraproduktivní – je třeba se řídit návodem k použití.

6.3.3.1.2 Přístroje a zařízení

Přístroj pro DSC s rychlostí ohřevu 5 °C/min a automatickým záznamem diferenciálního tepelného toku mezi vzorkem a referenčním materiálem s požadovanou citlivostí a shodností. Pro účely srovnání musí být jak pro kalibraci, tak pro analýzu použity stejné rychlosti ohřevu a podmínky prostředí.

Analytické váhy s přesností 0,01 mg.

Pouzdra na vzorky vyrobená z materiálu, který je nejen inertní k případnému výbuchu za podmínek zkoušky, ale má mít i vysokou tepelnou vodivost. Takovým vhodným materiálem je např. hliník, zlato nebo platina.
Zdroj (přívod) plynu pro proplachování. Průtok plynu má v průběhu zkoušky zůstat konstantní. Při nízkých teplotách se doporučuje použít helium, při vysokých (zhruba nad 100 °C) je vhodný dusík.

6.3.3.1.3 Postup zkoušky

Zařízení se zkalibruje v souladu s ČOS 137601, čl. 6.2 za stejných podmínek (typu držáku vzorku, rychlosti ohřevu, proplachovacího plynu a rychlosti jeho průtoku), jaké budou použity pro měření vzorku RDX.

Do předem zváženého pouzdra na vzorek se odvádí 0,5 mg až 1,0 mg reprezentativního podílu vzorku. Musí se zajistit dobrý tepelný kontakt mezi vzorkem a pouzdrem.

Zkouška se pak provede v souladu s postupem uvedeným v ČOS 137601, čl. 6.2 za použití rychlosti ohřevu 5 °C/min v celém teplotním rozsahu od 160 °C do konce endotermického piku. Vytvořený termogram se zaznamená.

6.3.3.1.4 Vyhodnocení a uvádění výsledků zkoušky

Bod tání se stanoví jako teplota, při které extrapolovaná základní linie před endotermickým onsetem protíná tečnu extrapolovanou z nejstrmější části endotermického onsetu.

6.3.3.2 Metoda s kapilární trubičkou

Tato metoda má být použita pouze jako záložní k metodě DSC, protože při rychlosti ohřevu menší než 5 °C/min může být zaznamenání bodu tání znejasněno rozkladem vzorku.

6.3.3.2.1 Princip metody

Princip této metody spočívá ve stanovení bodu tání krystalů RDX vložených do kapilární trubičky. Krystaly jsou zahřívány v trubičce umístěné v ohřívací lázní nebo termostatu s konstantní rychlostí ohřevu. Bod tání je detekován vizuálně nebo opticky jako teplota, při které polovina materiálu přejde do kapalného stavu.

6.3.3.2.2 Chemikálie a činidla

Část vzorku suchého RDX, opatrně rozmělněný na jemný prášek.

6.3.3.2.3 Přístroje a zařízení

Přístroj pro stanovení bodu tání, u kterého může být řízeno zahřívání vzorku rychlostí 1 °C/min a umožněna vizuální nebo optická detekce bodu tání.

Vhodně kalibrované teploměry pokrývající nejméně rozsahy 185 °C až 195 °C a 195 °C až 205 °C a dělené po 0,1 °C.

Trubičky pro stanovení bodu tání, tenkostěnné a na jednom konci uzavřené. Typické rozměry: vnější průměr 1,8 mm, vnitřní průměr 1,6 mm a délka 90 mm.

6.3.3.2.4 Postup zkoušky

Do kapilární trubičky se vloží takové množství suchého vzorku, aby se naplnila do výšky 10 mm. Ovládání přístroje se nastaví tak, aby se rychle dosáhla teplota o 10 °C nižší než předpokládaný bod tání.
Rychlost zahřívání vzorku se sníží na 1 °C až 2 °C za minutu a do přístroje se vloží kapilární trubička. Vzorek se umístí vodorovně do vzdálenosti 2 mm až 3 mm od rtuťové nádobky teploměru a svisle do její úrovni. Zaznamená se bod tání vzorku jako teplota, při které jeho polovina přejde do kapalného stavu. Když se teplota blíží bodu tání, může dojít k poklesu materiálu v trubičce a změně jeho barvy, což však nelze zaměňovat s jeho přeměnou v kapalinu. Hexogen se při tání rozkládá a uvolňuje bublinky plynu.

6.3.3.2.5 Vyhodnocení a uvádění výsledků zkoušky

Použijí se všechny nezbytné opravy vzhledem ke kalibrovanému teploměru. Do protokolu se uvede zaznamenaná teplota bodu tání s přesností na 0,1 °C.

6.3.3.3 Metoda Fischer-Johnsova

Tuto metodu má být použita pouze jako záložní k metodě DSC, protože při rychlosti ohřevu menší než 5 °C/min může být zaznamenání bodu tání ovlivněno rozkladem vzorku. Část vzorku suchého RDX, opatrně rozmělněné na jemný prášek.

6.3.3.3.2 Přístroje a zařízení

Fischer-Johnsův přístroj s Kochlerovým blokem na stanovení bodu tání (nebo v ekvivalentní).

Dvě krycí sklička o odpovídající velikosti.

Achátová třecí miska s tloučkem.

Teploměry s úzkým rozsahem měření, krátkým stonkem, určené pro úplně ponoření (rozsahy 185 °C až 195 °C a 195 °C až 205 °C, dělené po 0,1 °C).

6.3.3.3.3 Postup zkoušky

Přibližně 0,05 g jemně rozmělněného vzorku se vloží mezi dvě čistá krycí sklička. Jemně, ale pevně se stlačí k sobě a položí se na Kochlerův blok. Zapne se napájení a jednotka se nechá vyhřát. Do teploty přibližně o 15 °C nižší než předpokládaný bod tání může být zahříván velmi rychlé, poté se musí snížit na přibližně 1 °C.

Když vzorek začne tát, zaznamená se teplota jako bod tání RDX.

6.3.4 Stanovení obsahu látek nerozpustných v acetonu

6.3.4.1 Postup zkoušky

Podíl přibližně 10 g vysušeného vzorku zvážený s přesností na 0,1 mg (hmotnost \(w_1 \)) se nasypje do 400ml kádinky a přidá se 200 ml acetonu. Kádinka se přikryje hodinovým sklíčkem a vhodným způsobem se rozpustí (např. na parní lázni, ultrazvukem, micháním). Acetonový roztok vzorku se přefiltruje přes 25ml zvážený filtrační kelímek o střední půrovitosti, který byl předem promyt acetonem, přežíhán při teplotě (700 ± 20) °C, ochlazen na teplotu okolí a zvážen s přesností na 0,1 mg (hmotnost \(w_2 \)). Nerozpustný zbytek se třikrát promyje 20 ml acetonu, kelímek se nechá 30 minut sušit v sušárně při teplotě 105 °C, ochladí se v exsikátoru a zváží s přesností na 0,1 mg (hmotnost \(w_3 \)).
6.3.4.2 Výpočet a uvádění výsledků zkoušky
Procentuální obsah látek nerozpustných v acetonu se stanoví ze vztahu:

\[
\% \text{látek nerozpustných v acetonu} = \frac{w_3 - w_2}{w_1} \times 100 \quad (5),
\]

kde \(w_1 \) - navážka vzorku RDX [g],
\(w_2 \) - hmotnost prázdného filtračního kelímku [g],
\(w_3 \) - hmotnost filtračního kelímku s nerozpustěným zbytkem [g].

6.3.5 Stanovení obsahu anorganických látek
Tato zkouška se vyžaduje, jestliže množství látek nerozpustných v acetonu (viz čl. 6.3.4) je větší než 0,03 %.

6.3.5.1 Postup zkoušky
Veškeré organické látky se odstraní přežíháním materiálu shromážděného ve filtračním kelímku při zkoušce popsané v čl. 6.3.4 při teplotě (700 ± 20) °C. Kelímek se nechá ochladit a opětovně se zváží s přesností na 0,1 mg (hmotnost \(w_4 \)).

6.3.5.2 Výpočet a uvádění výsledků zkoušky
Procentuální obsah anorganických látek ve vzorku se stanoví ze vztahu:

\[
\% \text{anorganických látek} = \frac{w_4 - w_2}{w_1} \times 100 \quad (6),
\]

kde \(w_1 \) - navážka vzorku RDX [g],
\(w_2 \) - hmotnost prázdného filtračního kelímku [g],
\(w_4 \) - hmotnost filtračního kelímku po přežíhání [g].

6.3.6 Stanovení kyselosti
6.3.6.1 Chemikálie a činidla
Standardizovaný 0,05M roztok hydroxidu sodného.
Indikátor metylčervené/metylenmodré (0,1 g metylčervené a 0,05 g metylenmodré ve 100 ml 95% etanolu).
Aceton, čistý.

6.3.6.2 Přístroje a zařízení
Extrakční baňka o objemu 500 ml.
Mikrobyreta s dělením po 0,02 ml.
Odměrný válec o objemu 100 ml.

6.3.6.3 Postup zkoušky
Do 500ml extrakční baňky se odváží (10 ± 0,01) g suchého RDX, přidá se 100 ml acetonu odměřeného ve 100ml odměrném válcí a na hrdlo baňky se nasadí malý chladič. Baňka se zahřívá ve vodní lážni a obsah se ručně protřepává, až se RDX úplně rozpustí. Roztok se pak nechá vychladnout na teplotu okolí.
Roztok se vyráží pomalým přiléváním (po dobu 20 s až 30 s) 100 ml destilované vody, odměřené ve 100ml odměrném válci, a počká se, až se vyrážená výbušnina usadí (1 min až 2 min). Ke směsi se přidá 8 až 10 kapek indikátorového roztoku metylčerven-metylenmodř a titruje se 0,05M roztokem NaOH. Titrace se provádí s použitím mikrobyrety a odměrný roztok se přidává po kapkách za stálého míchání až do dosažení bodu ekvivalence. V tomto okamžiku se zaznamená spotřebovaný objem odměrného roztoku NaOH jako \(V_1 \).

Za stejných podmínek se provesde slepé stanovení. Do 500ml se nalije 100 ml acetonu, 100 ml destilované vody a přidá se 8 až 10 kapek indikátorového roztoku. Titruje se 0,05M roztokem NaOH a zaznamená se odpovídající spotřeba odměrného roztoku \(V_2 \) v bodě ekvivalence.

6.3.6.4 Výpočet a uvádění výsledků zkoušky

Procentuální obsah kyselosti ve vzorku se pro RDX Typ A vypočítá ze vztahu:

\[
\text{% kyselosti (jako HNO}_3\text{)} = \frac{C_{NaOH} \times (V_1 - V_2) \times 63,01}{1000 \times w_{RDX}} \times 100
\]

(7),

kde \(C_{NaOH} \) - koncentrace NaOH [mol/l],
\(V_1 \) - objem roztoku NaOH spotřebovaného při titraci vzorku [ml],
\(V_2 \) - objem roztoku NaOH spotřebovaného při slepém stanovení [ml],
\(W_{RDX} \) - navážka vzorku RDX [g],
63,0 - molekulová hmotnost HNO\(_3\) (g/mol),
1 000 - konverzní faktor pro přepočet litrů na mililitry (ml/l).

Procentuální obsah kyselosti ve vzorku se pro RDX Typ B vypočítá ze vztahu:

\[
\text{% kyselosti (jako CH}_3\text{COOH) = \frac{C_{NaOH} \times (V_1 - V_2) \times 60,05}{1000 \times w_{RDX}} \times 100}
\]

(8),

kde \(C_{NaOH} \) - koncentrace NaOH [mol/l],
\(V_1 \) - objem roztoku NaOH spotřebovaného při titraci vzorku [ml],
\(V_2 \) - objem roztoku NaOH spotřebovaného při slepém stanovení [ml],
\(W_{RDX} \) - navážka vzorku RDX [g],
60,05 - molekulová hmotnost CH\(_3\)COOH [g/mol],
1 000 - konverzní faktor pro přepočet litrů na mililitry (ml/l).

6.3.7 Stanovení obsahu pískovitých částic

Vzorek RDX o hmotnosti přibližně 50 g navážený s přesností na 1 mg se nasype na síto s otvory o velikosti 0,25 mm. Síto je nasypáno do přizpůsobeného Soxhletova nebo jiného vhodného extraktoru. Do baňky se přidá 300 ml až 500 ml acetonu a extrahuje se na parní lázní, až se všechn RDX rozpustí. Síto se vymírají a následně se spočítávají a zkontrolují zbylé částice. Částice se poté smetou na síto s otvory o velikosti 0,42 mm a stanoví se počet částic zadržených na tomto síto.

Zaznamená se, zda mají nerozpuštěné částice pískovitý charakter, který se vyznačuje nestejnoměrností materiálu a skřípavým zvukem při rozmačkávání a roztírání hladkou ocelovou špachtlí na hladké skleněné destičce.
6.3.8 Stanovení citlivosti k nárazu
Odběratel může od výrobce vyžadovat poskytnutí údajů o citlivosti k nárazu. V takovém případě musí být tento parametr posouzen v souladu s postupem uvedeným v ČOS 137601. Odběratel může požadovat i další informace o funkčních vlastnostech použitého zařízení.

6.3.9 Stanovení stability vakuovým stabilitním testem
Stanovení stability vakuovým stabilitním testem se provede v souladu s postupem uvedeným v ČOS 137601. U RDX se hmotnost vzorku pohybuje mezi 1,0 g až 5,0 g v závislosti na přesnosti použitého přístroje a objemu plynu, který může být tolerován. Zkušební teplota je 120 ± 0,5 °C a doba trvání zkoušky 24 hodin.

6.3.10 Stanovení zrnitosti
6.3.10.1 Metoda síťové analýzy
6.3.10.1.1 Chemikálie a činidla
Dioktylsulfosukcinát sodný nebo ekvivalentní povrchově aktivní látka (smáčedlo).

6.3.10.1.2 Přístroje a zařízení
Sada vhodných síť odpovídajících požadavkům ČSN ISO 3310-1 (nebo ekvivalentních).
Laboratorní sušárna.
Vhodný rozprašovač pro reprodukovatelné zvlhčení (smáčení) materiálu na síť.

6.3.10.1.3 Postup zkoušky
Všechna prázdna síta se vysuší při 60 °C po dobu 8 hodin a zváží se.

S přesností na 0,01 g se naváží 50 ± 0,05 g vzorku suchého RDX a nasype se do 600ml kádinky obsahující přibližně 300 ml dvouprocentního roztoku vhodné povrchově aktivní látky, např. dioktylsulfosukcinátu sodného. Pomocí skleněné tyčinky s pryžovým návlečkem se směš několik minut promíchává, aby došlo k důkladnému smočení vzorku a případnému rozrušení aglomerátů (hrudek).

Sestaví se sada určených síť tak, aby nejhrubší síto bylo nahoře. Musí být učiněna opatření k zamezení úniku výbušniny do odpadu. Pomocí sprchové růžice se spreje sevrchně až do doby, kdy nejsou Sidové aglomeráty na horním síti se zlehka rozmělují pomocí skleněné tyčinky s pryžovým návlečkem a pokračuje se v promývání materiálu na horním sítě až do okamžiku, kdy na sítě zůstávají jen jednotlivé krystaly větší než oka síta (pokud není odběratelem požadováno zachování a kvantifikace aglomerátů).

Odstraní se horní síto, k materiálu na dalším sítě se přidá několik kapek dvouprocentního roztoku povrchově aktivní látky, a promývá se až do doby, kdy nejsou
pozorovány žádné změny množství materiálu na sítě. Tento postup se opakuje u všech sít.

Síta se zbylým materiálem se suší 8 hodin v sušárně nastavené na 60 °C, pak se nechají vychladit v exskikátoru a zvážit se. Stanoví se čistá hmotnost materiálu zbylého na každém sítě. Jestliže se ukáže, že vzorek je již vysušen do konstantní hmotnosti, lze dobu sušení zkrátil.

6.3.10.1.4 Výpočet a uvádění výsledků zkoušky

Procentuální množství vzorku, které prošlo daným sítem, se vypočítá ze vztahu:

\[
\% \text{ vzorku prošlého } i\text{-tým sítem} = \left(\frac{W - \sum_{i=1}^{n} w_i}{W} \right) \times 100
\]

(9),

kde \(W \) - celková navážka vzorku RDX [g],
\(w_i \) - hmotnost RDX zachyceného na \(i\)-tém sítě [g],
\(n \) - celkový počet sítí [1].

6.3.10.2 Metoda LALLS

6.3.10.2.1 Princip metody

Metoda je založena na různém rozptylu laserového paprsku při průchodu přes suspenzi částic. Úhel rozptylu paprsku závisí na velikosti a tvaru částic. Metoda LALLS neposkytuje výsledky identické s výsledky sítové analýzy.

6.3.10.2.2 Chemikálie a činidla

Vhodné rozpouštědlo pro LALLS, ve kterém je RDX nerozpustný.

6.3.10.2.3 Přístroje a zařízení

LALLS spektrometr.

6.3.10.2.4 Postup zkoušky

Zkouška se provede v souladu s návodem k použití daného LALLS spektrometru.

6.3.10.2.5 Vyhodnocení a uvádění výsledků zkoušky

Analyzuje se grafické znázornění objemového rozdělení, tj. průměr částic vs. objemové procento nebo kumulativní objemové procento částic zachycených na ekvivalentním sítě.

Výsledek se uvádí jako procentuální množství vzorku, které by prošlo daným sítem a rovněž jako průměry částic [μm], které odpovídají kumulativnímu průchodu 10 obj. %, 50 obj. % a 90 obj. % částic. Uveďte se i specifikace spektrometru a podmínky zkoušky.

7 Tritol

7.1 Všeobecné požadavky

Účelem této kapitoly je stanovit takové požadavky na vlastnosti tritolu (TNT, trinitrotoluenu), které zajistí jeho použitelnost pro vojenské účely, a zároveň tak poskytnout vhodnou základnu pro jeho dodávky a certifikaci v rámci NATO.
Tritol, určený pro vojenské účely, musí splňovat kvalitativní požadavky uvedené v čl. 7.2 tohoto standardu, které jsou stanovovány postupy uvedenými v čl. 7.3. Požadavky se týkají pouze tritolu vyrobeného přímou nitrací toluenu a přečištěného sířičitanem sodným.

Tritol musí být v zásadě tvořen čistým 2,4,6-trinitrotoluenem se strukturním vzorcem uvedeným na obrázku 2.

![Obrázek 2 – Strukturní vzorec tritolu](image)

Odběratel může požadovat důkaz čistoty materiálu, zejména z hlediska obsahu mononitrotoluenu a/nebo jeho náchylnosti k vypocování pomocí zkoušek specifikovaných odběratelem.

7.2 Požadavky na kvalitu

Podle bodu tuhnutí jsou definovány čtyři kvalitativní třídy tritolu – pro všeobecné použití, pro speciální účely, pro pomocné účely a velmi čistý tritol. Požadavky na minimální hodnoty bodu tuhnutí jsou uvedeny v tabulce 4 a stanoví se postupem uvedeným v čl. 7.3.3.

TABULKA 4 – Požadavky na bod tuhnutí tritolu

<table>
<thead>
<tr>
<th>Kvalitativní třída tritolu</th>
<th>Minimální bod tuhnutí [ºC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritol pro pomocné účely</td>
<td>79,5</td>
</tr>
<tr>
<td>Tritol pro všeobecné použití</td>
<td>80,2</td>
</tr>
<tr>
<td>Tritol pro speciální účely</td>
<td>80,4</td>
</tr>
<tr>
<td>Velmi čistý tritol</td>
<td>80,6</td>
</tr>
</tbody>
</table>

Tritol pro všeobecné použití musí být tvořen žlutými šupinkami a je určen pro plnění dělostřeleckých střel, leteckých pum, ženijního náloživa a k výrobě trhavinových směsí (směsných trhavin). Průměrná tloušťka šupinek nesmí být větší než 0,63 mm a tloušťka každé jednotlivé šupinky nesmí být větší než 1,0 mm. Pokud je tritol této kvalitativní třídy dodáván např. ve formě krystalů, granulí nebo hrudek (kusový tritol), musí být požadavky na jeho rozměry definovány odběratelem.

Tritol pro speciální účely může být dle své fyzikální formy vhodný pro laborací rozbukšek nebo počínových, přenosových a zesilovacích náplní (krystalický nebo drcený šupinkový tritol) nebo pro výrobu směsných trhavin s požadavkem na vysokou čistotu tritolu (šupinkový tritol).

Tritol pro pomocné účely má podobné charakteristiky jako tritol pro všeobecné použití a používá se i pro stejné aplikace. Je však o něco nižší kvality, vyjádřený nižším bodem tuhnutí.
Velmi čistý tritol musí mít podobu šupinek, drcených šupinek nebo žlutých krystalů a je používán v případech, kdy je zapotřebí materiálu nejvyšší čistoty.

Požadovaná barva vzorku je specifikována v objednávce a stanovuje se pomocí standardů odběratele.

Vzorky tritolu se posuzují z hlediska přítomnosti cizorodých látek a jiných abnormalit (dle specifikace v objednávce). Přítomnost kalu, suspendovaných částic nebo sedimentu se zjišťuje postupem uvedeným v čl. 7.3.10.

Požadavky na fyzikálně-chemické vlastnosti všech kvalitativních tříd tritolu jsou uvedeny v tabulce 5.

TABULKA 5 – Požadavky na fyzikálně-chemické vlastnosti tritolu

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Požadovaná hodnota</th>
<th>Metoda zkoušení (viz čl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obsah vlhkosti, max.</td>
<td>0,1 %</td>
<td>7.3.4</td>
</tr>
<tr>
<td>Kyselost, max.</td>
<td>0,005 % (jako H₂SO₄) nebo 1,0 meq/kg</td>
<td>7.3.5</td>
</tr>
<tr>
<td>Alkalita</td>
<td>0</td>
<td>7.3.5</td>
</tr>
<tr>
<td>Obsah látek nerozpustných v toluenu, max.</td>
<td>0,05 %</td>
<td>7.3.6</td>
</tr>
<tr>
<td>Obsah sodíku, max.</td>
<td>0,001 %</td>
<td>7.3.9</td>
</tr>
<tr>
<td>Obsah pískovitých částeček zachycených na síť 0,25 mm</td>
<td>0</td>
<td>7.3.7</td>
</tr>
<tr>
<td>Obsah pískovitých částeček zachycených na síť 0,063 mm, max.</td>
<td>0,05 %</td>
<td>7.3.7</td>
</tr>
<tr>
<td>Přítomnost kalu, suspendovaných částic nebo sedimentu</td>
<td>0</td>
<td>7.3.10</td>
</tr>
<tr>
<td>Obsah síranového popela, max.</td>
<td>0,05 %</td>
<td>7.3.8</td>
</tr>
</tbody>
</table>

7.3 Metody zkoušení

Pro stanovení vlastností materiálu se používají standardní laboratorní postupy. Dále uvedené popisy se omezuji pouze na definování specifických podmínek a postupů, které musí být při provádění zkoušek dodrženy.

7.3.1 Stanovení zrnitosti

Vzorek o hmotnosti (100 ± 0,1) g se nasypne na síto (nebo sadu sítí) s požadovanou velikostí otvorů, opatřené horním víkem a spodní sběrnou miskou. Síty se třepe ručně nebo s použitím vhodného mechanického zařízení po dobu tří minut a poté se zváží množství vzorku zachycené na každém síť a případně také množství vzorku prošlé nejjemnějším sítem. Zaznamenají se procentuální podíly vzorku zachycené na jednotlivých sítech, případně i podíl prošlý spodním sítem.

7.3.2 Stanovení tloušťky šupinek

Mikrometrem se s přesností na 0,025 mm změří tloušťka dvaceti šupinek a výsledek se zaznamená.
7.3.3 Stanovení bodu tuhnutí (krystalizace)
7.3.3.1 Přístroje a zařízení
Vhodný přístroj pro stanovení bodu tuhnutí je zobrazen na obrázku 3. Pokud není vnější láhev vyrobená z tmavého skla, je ji nutno omotat hliníkovou fólií, aby byl vzorek při zkoušce chráněn před přímým slunečním zářením. Pro měření bodu tuhnutí vzorku se použije přesně kalibrovaný teploměr s dělením po 0,01 °C nejméně v rozsahu 79 °C až 81 °C.

![Diagram přístroje pro stanovení bodu tuhnutí tritolu](image)

OBRÁZEK 3 − Přístroj pro stanovení bodu tuhnutí tritolu

7.3.3.2 Postup zkoušky
Přibližně 50 g vzorku se roztaví v přikryté kádince jejím ponořením do vodní lázně o teplotě 95 °C až 100 °C nebo vložením do vhodné sušárny. Tavenina vzorku se nalije do vnitřní zkumavky přístroje do výšky 25 mm až 35 mm od vrchu. Teplota
taveniny při tom nemá být nižší než 85 °C. Je-li to nezbytné, zkumavka se vzorkem se může ohřát v lázní s horkou vodou a poté se vloží zpět do přístroje. Do zkumavky se vloží teploměr a míchadlo, které by měly být předehřáté pro zabránění tuhnutí tritolu na jejich povrchu. Nádobka teploměru by měla být ve středu zkumavky přibližně 25 mm ode dna. Vertikálním pohybem míchadla se taveninou přesně otopí a poté se vloží znovu do přístroje. Do zkumavky se vloží teploměr a míchadlo, které by měly být předehřáté pro zabránění tuhnutí tritolu na jejich povrchu. Nádobka teploměru by měla být ve středu zkumavky přibližně 25 mm ode dna. Vertikálním pohybem míchadla se taveninou nepřetržitě míchá. Teploměrem se lehce poklepe, aby bylo ověřeno, že rtuť neuvázla a zjištěná maximální teplota se zaznamená.

Jestliže je rozdíl mezi zaznamenanou minimální a maximální teplotou větší než 1,5 °C, může být stanovený bod tuhnutí z důvodu podchlazení nižší než skutečný. V takovém případě je nutno stanovení znovu upřesnit s novým vzorkem.

7.3.3.3 Vyhodnocení a uvádění výsledků zkoušky

Maximální zaznamenaná teplota se uvede jako bod tuhnutí. Pokud rtuťový sloupec plně vysunutý teploměru vyčníval nad hladinu vzorku, může být stanovený bod tuhnutí z důvodu podchlazení.

7.3.4 Stanovení obsahu vlhkosti

Stanovení obsahu vlhkosti se provádí metodou zpětné titrace dle Karl Fischera s elektrometrickou detekcí bodu ekvivalence. Použijte 8 až 10 g přesně naváženého vzorku, rozpuštěného v přibližně 100 ml směsi stejných dílů suchého toluenu a suchého metanolu. Vhodným postupem pro tento účel je metoda 101.4 uvedená ve standardu MIL-STD-650.

7.3.5 Stanovení kyselosti nebo alkality

7.3.5.1 Metoda 1

7.3.5.1.1 Postup zkoušky

Přesně navážený podíl přibližně 10 g vzorku se nasypte do 250 ml baňky na stanovení jedového číslo se skleněnou zátkou (nebo ekvivalentní) a odměrným válcem se přilije 40 ml toluenu. Stejný objem toluenu se nalije i do druhé baňky, která slouží jako nádoba pro složené stanovení. Obě baňky se zazátkují a babkou se vzorkem se třepi, až se vzorek zcela rozpustí. Do 100 ml odměrného válce se nalije 0,75 ml (přibližně 20 kapek) 0,05% vodního roztoku indikátoru bromthymolové modři a doplní se na 100 ml destilovanou vodou bez obsahu rozpuštěného oxidu uhličitého. 100 ml připraveného roztoku s indikátorom se nalije do baňky se vzorkem, totéž se opakuje i se slepým vzorkem. Obě baňky se intenzivně protřepávají po dobu 10 s až 20 s, aby byla zajištěna interakce mezi vodnou a toluenovou vrstvou. Protřepávání by však nemělo být příliš prudké, aby se zabránilo vzniku emulze.
Nejprve se titruje slepý vzorek. Pokud je nižší (vodná) vrstva modrá, přidává se po kapkách odměřené množství 0,005M kyseliny sírové, až se barva změní na zelenou nebo žlutou. Stejně množství kyseliny sírové se poté přidá i do roztoku vzorku. Jestliže je na začátku vodná vrstva žlutá nebo zelená, titruje se 0,01M odměrným roztokem hydroxidu sodného. Roztok NaOH se přidává po kapkách, přičemž po každém přidání se baňka zazátkuje a protřepává po dobu 5 až 10 s. Za bod ekvivalence se bere vznik modrého zbarvení, které přetrvává po dobu dvou minut po oddělení vrstev toluenu a vody a po dalších 5 až 10 s protřepávání. Modrá barva roztoku může po posledním protřepání poněkud zeslábnout nebo získat nádech zelené; tento jev je přípustný.

Obdobným způsobem se titruje i vzorek tritolu. Za bod ekvivalence se považuje, stejně jako v případě slepého vzorku, stálá modrá barva vodné vrstvy, což se musí kontrolovat horizontálně proti bílému nebo bezbarvému pozadí, protože prošlé nebo odražené světlo ze žlutého toluenového roztoku vzorku může způsobit zelené zbarvení vodné vrstvy. Kromě toho neúplné oddělení toluenové a vodné vrstvy může způsobit zakalení, které vodnou vrstvu rovněž zbarvuje do zelena.

7.3.5.1.2 Výpočet a uvádění výsledků zkoušky

Obsah kyselosti ve vzorku se vypočítá ze vztahu:

\[
\text{obsah kyselosti [meq/kg]} = \frac{1000 \times (V_1 - V_2) \times M}{W} \tag{11}
\]

nebo

\[
\text{% kyselosti (jako H}_2\text{SO}_4) = \frac{4,9 \times (V_1 - V_2) \times M}{W} \tag{12}
\]

kde

- \(V_1 \) - spotřeba odměrného roztoku NaOH při titraci vzorku [ml],
- \(V_2 \) - spotřeba odměrného roztoku NaOH při slepém stanovení [ml],
- \(M \) - molární koncentrace odměrného roztoku NaOH [mol/l],
- \(W \) - navážka vzorku [g].

7.3.5.2 Metoda 2

7.3.5.2.1 Postup zkoušky

Vzorek tritolu o hmotnosti 10 g se s přesností na 0,01 g naváží do 500 ml baňky a rozpustí se v 50 ml acetonu. Přidá se 150 ml destilované vody, dobře se protřepe a vysražený TNT se nechá usadit (jednu až dvě minuty). Poté se přidá deset kapek indikátorového roztoku metylčerven/metylenmodř (0,1 g metylčervené a 0,05 g metylenmodře ve 100 ml 96% etanolu) a titruje se 0,005M odměrným roztokem uhličitanu sodného nebo 0,005M kyselinou sírovou či 0,01M kyselinou chlorovodíkovou – podle toho, zda indikátor indikuje kyselé (fialová barva) nebo alkalické (zelená barva) prostředí. Zaznamená se objem spotřebovaného titračního roztoku \(V_1 \) v bodě ekvivalence. Obdobným způsobem se zaznamená odpovídající objem \(V_2 \) při titraci slepého vzorku.
7.3.5.2.2 Výpočet a uvádění výsledků zkoušky

Obsah kyselosti ve vzorku se vypočítá ze vztahu:

\[
\text{obsah kyselosti [meq/kg]} = \frac{1000 \times (V_1 - V_2) \times N}{2 \times W} \quad (13),
\]

nebo

\[
\% \text{ kyselosti (jako H}_2\text{SO}_4) = \frac{4.9 \times (V_1 - V_2) \times N}{W} \quad (14),
\]

kde \(V_1 \) - spotřeba odměrného roztoku při titraci vzorku [ml],
\(V_2 \) - spotřeba odměrného roztoku při slepém stanovení [ml],
\(N \) - normální koncentrace odměrného roztoku [val/l],
\(W \) - navážka vzorku [g].

Objemy se berou jako kladné, jestliže se provádí titrace alkálií, a záporné, titruje-li se kyselinou.

7.3.5.3 Alkalita

Vzorek bude považován za nevyhovující z hlediska alkality, jestliže:

a) v postupu uvedeném v čl. 7.3.5.1 (Metoda 1) zůstává roztok vzorku i po opravě na alkalitu slepého vzorku stále alkalický nebo pokud je objem \(V_2 \) větší než \(V_1 \),

b) v postupu uvedeném v čl. 7.3.5.2 (Metoda 2) je při stanovení kyselosti objem \(V_2 \) větší než \(V_1 \) a jestliže při titraci kyselinou jsou použity záporné hodnoty objemu, resp. pokud při titraci zásadou jsou použity kladné hodnoty objemu.

7.3.6 Stanovení obsahu látek nerozpustných v toluenu

7.3.6.1 Postup zkoušky

Vzorek o hmotnosti \((10 \pm 0,1)\) g se nasypе do 400ml kádinky, přídá se 150 ml suchého toluenu, kádinka se přikryje hodi‌novým sklíčkem a vloží do lázně s horkou vodou. Směs se pro usnadnění rozpouštění občas promíchá a poté se nechá stát bez michání v lázní pro usazení nerozpustného podílu. Po minimálně 30 minutách se roztok přelije přes zvážený filtrační kelímek o porovitosti G4 nebo ekvivalentní (hmotnost \(W_1 \)). Zbytek na fritě se promývá horkým suchým toluenem, až se z něj odstraní stopy tritolu. Kelímek se zbytkem se vysuší při 100 °C, poté se nechá ochladit v exsikátoru a zváží se (hmotnost \(W_2 \)).

7.3.6.2 Výpočet a uvádění výsledků zkoušky

Procentuální obsah látek nerozpustných v toluenu se vypočítá ze vztahu.

\[
\% \text{látěk nerozpustných v toluenu} = 10 \times (W_2 - W_1) \quad (15),
\]

kde \(W_1 \) - hmotnost filtračního kelímku [g],
\(W_2 \) - hmotnost filtračního kelímku s vysušeným zbytkem [g].

7.3.7 Stanovení obsahu pískovitých částic

Pískovité částice jsou definovány jako anorganické částice větší než 63 μm, které jsou nerozpustné v lučavce královské.
7.3.7.1 Přístroje a zařízení
Síto o průměru 4 cm, vysoké 9 cm, s velikostí otvorů 63 μm.
Síto o průměru 4 cm, vysoké 1 cm, s velikostí otvorů 250 μm.

7.3.7.2 Postup zkoušky
Vzorek o hmotnosti 50 g vzorku se nasypne na vysoké síto o velikosti otvorů 63 μm. Síto se usadí do 400ml kádinky, přidá se 200 ml toluenu a vše se vloží do lázně s horkou vodou. Pro usnadnění rozpouštění se materiálem opatrně míchá. Síto se pak vloží do jiné kádinky a postup se opakuje, až se všechen tritol rozpustí. Síto se promyje toluenem a vysuší se na plotně ohřívanou sušárně.

Zbytek ze síta se přenese do 50ml kádinky, přidá se 5 ml lučavky královské a zahřívá se na topné desce, až se objem roztoku sníží na 2 ml až 3 ml. Směs se nechá ochladit, zředí se vodou, přidá se jemně směsí a vše se vloží do lázně s horkou vodou nebo ve vhodné sušárně.

Kapalina se přelije přes 63μm síto, dobře se promyje vodou a nakonec acetonem. Síto se vysuší, ochladí a zbytek se zváží (hmotnost W).

7.3.8.1 Postup zkoušky
Porcelánový kelímek o průměru 6 cm až 7 cm se přežíhá plamenem Bunsenova hořáku, nechá se ochladit v exsikátoru po dobu 20 minut a zváží se (hmotnost W1). Kelímek se naváží (5 ± 0,1) g vzorku a přidá se 1 ml koncentrované kyseliny sírové. Kelímek s obsahem se zahřívá 30 minut ve vroucí vodní lázni a poté se vloží do křemenného nebo keramického trianglu na trojnožce umístěné v digestoři. Kelímek se zahřívá 4 cm až 5 cm dlouhým plamenem Bunsenova kahanu. V okamžiku, kdy obsah kelímku začne vyvíjet dýmy, se plamen usměrňuje do směsi, až se vzorek tritolu vznítí. Pokud vzorek hoří prudce, plamen kahanu se oddáli a takto se opakovaně udržuje stabilita hoření vzorku. Ke konci se vzorek zahřívá již jen slabě pro vypuštění kyseliny sírové a potom zase silněji pro spálení zbytkového uhlíku.

Kelímek se následně ochladí v exsikátoru po dobu 20 minut a následně se zváží (hmotnost W2). Při spalování vzorku musí být oči chráněny ochrannými brýlemi.
7.3.8.2 Výpočet a uvádění výsledků zkoušky

Procentuální obsah síranového popela se stanoví ze vztahu:

\[
\% \text{ síranového popela} = 20 \times \left(W_2 - W_1 \right)
\] \hspace{1cm} (18),

kde \(W_1 \) - hmotnost kelímku [g],
\(W_2 \) - hmotnost kelímku s vysušeným zbytkem [g].

7.3.9 Stanovení obsahu sodíku

7.3.9.1 Princip metody

Obsah sodíku v tritolu se stanovuje atomovou absorpční spektrofotometrií nebo plamenovou fotometrií. Dále jsou popsány dvě doporučené metody – při první se stanovuje obsah sodíku v roztoku tritolu, při druhé ve vodném extraktu tritolu. Ke stanovení mohou být použity i alternativní metody, pokud mají srovnatelnou přesnost.

7.3.9.2 Přístroje a zařízení

Vhodný spektrofotometr, udržovaný a provozovaný dle pokynů výrobce.

7.3.9.3 Chemikálie a činidla

Voda bez obsahu sodíku, případně je nutno u použité vody provést odpovídající opravu na obsah sodíku.

Salicylát sodný, o čistotě p.a.

7.3.9.4 Nastavení spektrofotometru

Přístroj se nastaví na parametry pro stanovení sodíku. Pokud se použije plamenový fotometr, vlnová délka se nastaví na 589 nm a dále se došlá pro získání maximální odevzy detektoru při měření roztoku o přibližné koncentraci sodíku 10 ppm.

7.3.9.5 Metoda s přímým rozpuštěním vzorku

7.3.9.5.1 Koncentrovaný roztok salicylátu sodného

Do suché a čisté odměrné baňky o objemu 1 000 ml se naváží přesně 0,696 3 g salicylátu sodného a rozpustí se v 700 ml acetonu doplněného po rysku vodou. Takový roztok obsahuje 100 ppm sodíku.

7.3.9.5.2 Kalibrační roztoky

Do jednotlivých 100ml odměrných baňek se odpipetuje 2 ml, 4 ml, 6 ml, 8 ml, 10 ml a 12 ml koncentrovaného roztoku salicylátu sodného, přidá se 70 ml acetonu, doplní vodou po rysku a dobře promíchá. Připravené roztoky obsahují v daném pořadí 2 ppm, 4 ppm, 6 ppm, 8 ppm, 10 ppm a 12 ppm sodíku.

7.3.9.5.3 Kalibrační křivka

Nejprve se v plameni spektrofotometru změří slepý vzorek obsahující směs 70 ml acetonu a 30 ml vody a zaznamená se odevzda detektoru.

Pokračuje se měřením kalibračních roztoků popsaných v čl. 7.3.9.5.2 a sestrojí se graf závislosti koncentrace sodíku v ppm na odevzdu detektoru.
7.3.9.5.4 Postup zkoušky

Odváží se \((5 \pm 0,05)\) g vzorku tritolu, přesyspe se do 100 ml odměrné baňky, přidá se 70 ml acetonu a protřepává se, až se titol rozpustí. Roztok v baňce se poté doplní vodou po rysku, důkladně se promíchá a rozpráší se do plamene za stejných podmínek jako při kalibraci. Z odezvy detektoru se na kalibrační křivce odečte odpovídající koncentrace sodíku \(C\) ve vzorku.

7.3.9.5.5 Výpočet a uvádění výsledků zkoušky

Procentuální obsah sodíku ve vzorku ve vzorku se stanoví ze vztahu:

\[
\% \text{ sodíku} = C \times 0,002
\]

kde \(C\) - koncentrace sodíku v roztoku vzorku [ppm].

7.3.9.6 Metoda s vodným extraktem

7.3.9.6.1 Standardní roztok sodíku

Naváží se 0,2545 g chloridu sodného o čistotě p.a., vysušeného při 105 °C po dobu 1 hodiny, rozpustí se ve vodě v jednolitrové odměrné baňce a doplní se vodou po rysku. Takový standardní roztok obsahuje 100 ppm sodíku.

7.3.9.6.2 Kalibrační roztoky

Do jednotlivých 100 ml odměrných baňek se odpipetuje 2 ml, 4 ml, 6 ml, 8 ml, 10 ml a 12 ml standardního roztoku sodíku, doplní vodou po rysku a dobře promíchá. Připravené kalibrační roztoky obsahují v daném pořadí 2 ppm, 4 ppm, 6 ppm, 8 ppm, 10 ppm a 12 ppm sodíku.

7.3.9.6.3 Kalibrační křivka

Nejprve se v plameni spektrofotometru změří slepý vzorek obsahující vodu použitou pro přípravu roztoků a zaznamená se odezva detektoru. Pokračuje se měřením kalibračních roztoků popsáných v čl. 7.3.9.6.2 a sestrojí se graf závislosti koncentrace sodíku v ppm na odezvě detektoru.

7.3.9.6.4 Postup zkoušky

Do čisté platinové misky se odváží \((5 \pm 0,05)\) g vzorku tritolu a přidá se 1 ml koncentrované kyseliny sírové. Platinová miska se směsí se 30 minut zahřívá na parní lázní, poté se vloží do keramického nebo křemenného trojúhelníku na trojnožce umístěné v digestoři a zahřívá se do 4 cm až 5 cm dlouhým plamenem Bunsenova kahanu. V okamžiku, kdy obsah misky začne vyvíjet dýmy, nastaví se plamen na povrch směsi a zahřívá se tak dlouho, až se vzorek vznítí. Pokud vzorek hoří prudce, plamen kahanu se oddalí a takto se opakováně udržuje stabilita hoření vzorku. Ke konci se vzorek zahřívá již jen slabě pro vypuzení kyseliny sírové. Miska se vzorkem se následně přežíhá v muflové peci při teplotě 600 °C pro odstranění uhlikatých látek, poté se ochladí na teplotu okolí a zbytek na mísce se rozpustí ve vodě, kvantitativně se přenesí do 25 ml odměrné baňky, doplní vodou po rysku a důkladně promíchá. Roztok se rozpráší do plamene za stejných podmínek jako při kalibraci. Z odezvy detektoru se na kalibrační křivce odečte odpovídající koncentrace sodíku \(C\) v roztoku vzorku.
7.3.9.6.5 Výpočet a uvádění výsledků zkoušky

Procentuální obsah sodíku ve vzorku se stanoví ze vztahu:

\[\text{% sodíku} = C \times 0,000\,5 \] \hspace{0.5cm} (20),

kde \(C \) - koncentrace sodíku v roztoku vzorku [ppm].

7.3.10 Stanovení přítomnosti kalu, suspendovaných částic nebo sedimentu

Minimálně 50 g vzorku se roztaví v kádince nebo porcelánové misce a tavenina se zkonzoluje na přítomnost kalu, suspendovaných částic nebo sedimentu.

8 Oktogen

8.1 Všeobecné požadavky

Účelem této kapitoly je stanovit takové požadavky na vlastnosti oktogenu (HMX, cyklotetrametylentetranitraminu), které zajistí jeho použitelnost pro vojenské účely, a zároveň tak poskytnout vhodnou základnu pro jeho dodávky a certifikaci v rámci NATO.

Tento standard vyžaduje použití látek a zkušebních postupů, které mohou ohrozit lidské zdraví. Musí být proto přijata odpovídající bezpečnostní opatření, která tato rizika snížují na nejmenší možnou míru. Je nezbytné se řídit informacemi uvedenými v bezpečnostních listech a požadavky zákonných předpisů.

Každý nový nebo modifikovaný výrobní proces musí být zaznamenán a údaje o něm musí být na vyžádání poskytnuty v dohodnutém rozsahu odběrateli. Takto vyrobený oktogen lze předat odběrateli až po odsouhlasení změn z jeho strany.

Oktogen, určený pro vojenské účely, musí splňovat kvalitativní požadavky uvedené v čl. 8.2 tohoto standardu (pokud se nejedná o materiál objednaný pro speciální účely), které jsou stanovovány postupy uvedenými v čl. 8.3.

8.2 Požadavky na kvalitu

Oktogen musí být v zásadě tvořen čistým cyklotetrametylentetranitraminem. Musí mít formu beta-krystalů s případnými stopami alfa formy krystalů. Může rovněž obsahovat určitý podíl cyklotrimetylentrinitraminu (hexogenu, RDX).

Podle obsahu hexogenu jsou definovány tři kvalitativní třídy oktogenu:

- Typ I – obsah hexogenu maximálně 7 %.
- Typ II – obsah hexogenu maximálně 2 %.
- Typ III – obsah hexogenu maximálně 0,2 %.

Oktogen musí mít formu bílých krystalů různých tvarů. Odběratel musí ve své objednávce jasně specifikovat, který typ oktogenu požaduje. Stejně tak může specifikovat i rozdělení velikosti částic.

Pro účely zkoušek se z každé výrobní série odebere reprezentativní vzorek o hmotnosti minimálně 200 g, a to postupem odsouhlaseným odběratelem.

Požadavky na fyzikálně-chemické vlastnosti jednotlivých typů oktogenu jsou uvedeny v tabulce 6.
TABULKA 6 – Požadavky na fyzikálně-chemické vlastnosti oktogenu

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Požadovaná hodnota</th>
<th>Metoda zkoušení (viz čl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typ I</td>
<td>Typ II</td>
</tr>
<tr>
<td>Obsah hexogenu [%], max.</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Obsah alfa-oktogenu [%], max.</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>(a) Sekvenční počet alfa-kristalů o maximálních rozměrech 30 μm až 120 μm:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Max. počet alfa-kristalů na 600 kristalů</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>- Max. počet alfa-kristalů na 1 000 kristalů</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Max. počet alfa-kristalů na 2 000 kristalů</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(b) Max. počet alfa-kristalů nad 10 μm nejmenšího rozdělu nebo nad 120 μm největšího rozdělu</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(c) Dodatečná absorptivní IČ záření kromě absorptivní čisté β-oktogen v pásmích 848 cm⁻¹ až 850 cm⁻¹ a 1 030 cm⁻¹ až 1 035 cm⁻¹</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bod tání [ºC], min.a)</td>
<td>---</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
</tr>
<tr>
<td>Obsah nerozpušťných látek [%], max.</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>(a) Z toho anorganických látek [%], max.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Obsah pískovitých částic (na 50 g)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a) Max. počet pískovitých částic největších než 0,42/0,50 mm</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b) Max. počet pískovitých částic největších než 0,25 mm</td>
<td>---</td>
<td>0,01</td>
</tr>
<tr>
<td>(c) Max. % pískovitých částic největších než 0,063 mm</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Obsah popela [%], max.</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>Kyselost [meq/kg], max.</td>
<td>3,3</td>
<td>3,3</td>
</tr>
<tr>
<td>Alkalita [meq/kg], max.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Vakuový stabilitní test při 120 ºC po dobu 40 hodin [ml/g], max.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Obsah cyklohexanonu [%], max.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Čítivost k nárazu [min.]</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

a) Při měření bodu tání se z možných metod vybere a použije pouze jedna z nich.

b) Jestliže se při příslušném sekvenčním kroku napočítají více než 2 alfa-kristaly, resp. více než 8 alfa-kristaly, počítání musí pokračovat pro ověření maximální hodnoty 20 alfa-kristalů na 2 000 kristalů.

c) Mezní hodnotu citlivosti k nárazu určí odběratel.
U oktogenu Typ I a Typ II musí být výrobce na žádost odběratele schopen vhodnou zkouškou prokázat, že výbušnina má dostatečně nízkou citlivost zaručující nepřítomnost zcitlivujících příměsí.

8.3 Metody zkoušení
8.3.1 Stanovení obsahu hexogenu kapalinovou chromatografií
8.3.1.1 Princip metody
Stanovení se provádí rozpuštěním vzorku, společně s vhodným vnitřním standardem, v acetonu a následnou analýzou roztoku kapalinovou chromatografií (HPLC).

8.3.1.2 Chemikálie a činidla
Aceton, o čistotě p.a.
Metanol, o čistotě p.a.
Acetonitril, o čistotě pro HPLC.
Čistý oktogen.
Čistý hexogen.
Čistý dimetylftalát.

8.3.1.3 Přístroje a zařízení
HPLC chromatograf se samočinnou regulací průtoku.
UV detektor s měnitelnou vlnovou délkou.
Potenciometrický zapisovač.
Integrátor a systém sběru a zpracování dat.
Filtrace zařízení s pórovitostí 0,5 μm.
Odplyňovací systém rozpouštědla.
Běžné laboratorní skleněné pomůcky a vybavení.

8.3.1.4 Postup zkoušky
8.3.1.4.1 Podmínky HPLC
Kolona: silikagelový nosič se stacionární fází C18.
Vlnová délka UV detektoru: 220 nm.

8.3.1.4.2 Příprava standardního roztoku
S přesností na 0,01 mg se naváží přibližně 10 mg RDX, 10 mg HMX a 10 mg dimetylftalátu a rozpustí se ve 100 ml acetonu.

8.3.1.4.3 Příprava analyzovaného roztoku vzorku
Roztok vzorku se připraví rozpuštěním 1 g analyzovaného HMX (nebo RDX), naváženého s přesností na 1 mg, a přibližně 10 mg dimetylftalátu, naváženého s přesností na 0,1 mg, ve 100 ml acetonu s následnou filtrací přes filtr o pórovitosti 0,5 μm.
8.3.1.4.4 Dávkování

Do chromatografu se nastřikují 3 μl roztoků, přičemž roztoky standardu i vzorku se musí analyzovat za stejných provozních podmínek.

8.3.1.5 Vyhodnocení a uvádění výsledků zkoušky

Odezvový koeficient K_F analyzované látky i se vypočítá ze vztahu:

$$K_F = \frac{m_i A_i}{m_E A_E}$$ \hspace{1cm} (21),

kde A_i - výška píku analyzované látky i [mAU],

A_E - výška píku dimetylftalátu [mAU],

m_i - navážka vzorku analyzované látky i [g],

m_E - navážka dimetylftalátu [g].

Procentuální obsah analyzované látky i ve vzorku se vypočítá ze vztahu:

$$\% \text{ analyzované látky } i = \frac{m_E K_F A_i \times 100}{A_E}$$ \hspace{1cm} (22),

kde A_i - výška píku analyzované látky i [mAU],

A_E - výška píku dimetylftalátu [mAU],

M - navážka vzorku [g],

m_E - navážka dimetylftalátu ,

K_F - odezvový koeficient – viz rovnice (21) [1].

8.3.2 Stanovení obsahu hexogenu a alfa-oktogenu rentgenovou difrakcí

8.3.2.1 Princip metody

Obsah alfa-oktogenu, beta-oktogenu a hexogenu ve vzorku oktogenu se stanoví rentgenovou difrakcí. Difrakční spektra těchto složek vykazují v přítomnosti beta-oktogenu charakteristické difrakce při hodnotách úhlu 2theta rovná 17,710 ° (hexogen) a 25,10 ° (alfa-oktogen). Intenzity pozadí mohou být měřeny při úhlech 2theta pro hexogen 16,90 ° a pro alfa-oktogen 24,10 ° 20. Obsah beta-oktogenu jako hlavní složky se stanoví z rozdílu obsahů.

8.3.2.2 Chemikálie a činidla

Aceton, 50% vodný roztok.

1,2-dichloretan.

Dietyléter.

Dimetylsulfoxid.

Destilovaná voda.

Ledová kyselina octová.

Oktogen (o vysoké čistotě).

Kyselina dusičná o koncentraci 70 hm. %.

Hexogen (o vysoké čistotě).

Octan sodný.
8.3.2.3 Přístroje a zařízení

Rentgenový difraktometr (např. Philips Electronic Instrument nebo ekvivalentní) vybavený stabilizátorem napětí a proudu, scintilačním detektorem a měděnou terčovou trubicí. Zdroj energie přístroje by měl mít schopnost buzení na 40 kV a žhavicí proud 20 mA. Analyzátor výšky impulzu má propouštět K-záření mědi, k odstranění tohoto záření může být použit niklový filtr. Zdroj energie přístroje by měl schopnost buzení na 40 kV a žhavicí proud 20 mA.

Kádinka o objemu 1 l.
Filtrační kelímek o střední pórovitosti.
Vakuová sušárna.
Váhy.
Třepačka.
Skleněná frita o jemné pórovitosti.
Filtrační baňka.
Kónická baňka.
Vývěva.
Erlenmeyerova baňka o objemu 250 ml.
Milimetrový papír.
Moždíř.

8.3.2.4 Postup zkoušky
8.3.2.4.1 Příprava zkoušky

Práce s rentgenovým difraktometrem se musí provádět v souladu s pokyny výrobce.

Beta-oktogen. Naváží se přibližně 225 g vzorku vysoce čistého oktogenu, vloží se do kádinky a přidá se stovky ml žluťivého roztoku pH 4,6 připraveného zředěním 6,0 ml ledové kyseliny octové a 13,6 g octanu sodného vodu na objem 1 litr. Směs se zahřívá dvě hodiny při 80 °C, poté se přefiltruje přes filtrační kelímek o střední pórovitosti a zbytek na filtru (HMX) se suší při 100 °C po dobu dvou hodin.

Alfa-oktogen. Do 80 ml 70% kyseliny dusičné se přidá se 4 g přečištěného beta-oktogenu. Směs se zahřívá až do rozpuštění oktogenu, poté se roztok přefiltruje přes filtrační papír a nechá se pomalu ochladit na 30 °C. Po jedné hodině stání se směs přefiltruje přes filtrační kelímek o střední pórovitosti. Zbytek zachycený na filtru se ukládá do férového dílu destilovanou vodou a suší se ve vakuové sušárně při teplotě 60 °C po dobu dvou hodin.

Hexogen. Naváží se přibližně 100 g vzorku vysoce čistého hexogenu, vloží se do kádinky a přidá se čtyři ml žluťivého roztoku pH 4,6 připraveného zředěním 6,0 ml ledové kyseliny octové a 13,6 g octanu sodného vodu na objem 1 litr. Směs se zahřívá dvě hodiny při 90 °C, poté se přefiltruje přes filtrační kelímek o střední pórovitosti a zbytek na filtru (hexogen) se suší při 100 °C po dobu dvou hodin. Směs se vakuové sušárně a 1 až 1,5 objemového dílu
dimetylsulfoxidu se zahřeje na 92 °C až 96 °C (s případným přidáním dalšího 1 dílu dimetylsulfoxidu pro úplné rozpuštění hexogenu). Roztok se pak zahřívá 30 minut při 92 °C až 96 °C. K roztoku se poté přidává destilovaná voda, až se roztok začne kalit. Směs se zase zahřeje až do opětovného vyčerpení a poté se rychle zchladí na pokojovou teplotu a přefiltruje. Malý vzorek sraženiny se promyje a vysuší pro analýzu čistoty popsanou v čl. 8.3.2.4.2. Výše uvedený postup se opakuje tak dlouho, až se získá velmi čistý produkt. Sraženina na filtru se poté promyje 50% vodným roztokem acetonu a suší se při 100 °C po dobu dvou hodin.

8.3.2.4.2 Analýza čistoty standardu hexogenu

Pro analýzu čistoty standardu hexogenu se nejprve připraví rozpouštědlo hexogenu promícháním krystalů oktogenu s 1,2-dichloretanem za teploty okolí po dobu čtyř hodin. Rozpustnost oktogenu v 1,2-dichloretanu za teploty 24 °C je 0,02 g na 100 ml. S přesností na 0,1 mg se do zvážené skleněné kónické baňky se zatíží koncepční standard hexogenu (hmotnost Wg). Přidá se 100 ml 1,2-dichloretanu nasyceného oktogenem, baňka se zazátkuje a baňkou se jednu hodinu třepe. Přesně se zváží skleněná frita o jemné pórovitosti a objemu 30 ml a usadí se na filtrační baňku. Za spuštěného odsávání se obsah kónické baňky s pomocí oktogenem nasyceného 1,2-dichloretanu přelije na fritu. Zbytek na fritě se dvakrát promyje 100 ml dietyléteru.

V odsávání se pokračuje dalších 15 minut pro vysušení zfiltrovaného zbytku hexogenu, poté se frita vloží do exsikátoru, nechá se vytémperovat na teplotu okolí a zváží se. Nerozpustný zbytek na fritě se dvakrát promyje 100 ml dietyléteru.

8.3.2.4.3 Kalibrační standardy

Pro kalibrace přístrojů se připraví směsné kalibrační standardy o složení uvedeném v tabulce 7 a hmotnosti po 5 g (s přesností na 0,1 mg). K přípravě směsného standardu se používají přečištěné materiály prosáté přes síto s velikostí ok 60 μm v takových navážkách, aby poskytly celkem 5,0 g směsi. Navažování složek se provádí s přesností na 0,1 mg. Po navážení se nasypou do Erlenmeyerových baněk o objemu 250 ml a nechají se třepat v třepačce po dobu minimálně tří hodin.

<table>
<thead>
<tr>
<th>Beta-oktogen [%]</th>
<th>Alfa-oktogen [%]</th>
<th>Hexogen [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>99,70</td>
<td>0,30</td>
<td>0,00</td>
</tr>
<tr>
<td>99,40</td>
<td>0,60</td>
<td>0,00</td>
</tr>
<tr>
<td>99,00</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td>98,00</td>
<td>2,00</td>
<td>0,00</td>
</tr>
<tr>
<td>97,00</td>
<td>3,00</td>
<td>0,00</td>
</tr>
<tr>
<td>96,00</td>
<td>4,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Beta-oktogen [%]</td>
<td>Alfa-oktogen [%]</td>
<td>Hexogen [%]</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>95,00</td>
<td>5,00</td>
<td>0,00</td>
</tr>
<tr>
<td>99,00</td>
<td>0,00</td>
<td>1,00</td>
</tr>
<tr>
<td>98,00</td>
<td>0,00</td>
<td>2,00</td>
</tr>
<tr>
<td>97,00</td>
<td>0,00</td>
<td>3,00</td>
</tr>
<tr>
<td>96,00</td>
<td>0,00</td>
<td>4,00</td>
</tr>
<tr>
<td>95,00</td>
<td>0,00</td>
<td>5,00</td>
</tr>
<tr>
<td>94,00</td>
<td>0,00</td>
<td>6,00</td>
</tr>
<tr>
<td>93,00</td>
<td>0,00</td>
<td>7,00</td>
</tr>
<tr>
<td>92,00</td>
<td>0,00</td>
<td>8,00</td>
</tr>
<tr>
<td>91,00</td>
<td>0,00</td>
<td>9,00</td>
</tr>
<tr>
<td>90,00</td>
<td>0,00</td>
<td>10,00</td>
</tr>
</tbody>
</table>

8.3.2.4.4 Postup kalibrace

Vlastní kalibrace se provádí měřením intenzit směsných kalibračních standardů při úhlech 2 theta o velikostech 16,90°, 17,81°, 24,10° a 25,10° postupem uvedeným v čl. 8.3.2.4.5. Ze získaných výsledků se zpracuje kalibrační křivka hexogenu grafickým vyvýšením závislosti opravené intenzity [cps] při úhlu 2 theta o velikosti 17,81° na koncentraci hexogenu [hm. %]. Analogicky se vypracovává kalibrační křivka alfa-oktogenu z dat získaných při úhlu 2 theta o velikosti 25,10°. Rovněž se vytvoří opravná kalibrační křivka pro stanovení alfa-oktogenu za přítomnosti hexogenu grafickým vyvýšením závislosti opravené intenzity [cps] při úhlu 2 theta o velikosti 25,10° na koncentraci hexogenu [hm. %] pro vzorky bez obsahu alfa-oktogenu.

8.3.2.4.5 Příprava a analýza vzorku oktogenu

Pro analýzu se použije vzorek oktogenu o velikosti částic menší než 62 μm. Pokud má vzorek (zejména rekristalizovaný oktogen) částice větší, je vzorek nutno lehce podrít v moždíři. Drcení se provádí opatrně po 0,1 g; celkově je ke zkoušce potřeba 0,4 g vzorku. Hliníkový držák vzorku se položí na velmi jemný povrch typu leštěné nerezové oceli, drážkovanou stranou dolů. Do dutiny držáku se nasypne vzorek a slisuje se špachtlí. Následně se přidá další podíl práškového vzorku a ručně se slisuje nerezovým blokem silou 250 N až 500 N. Poté se ziskoucí povrch vzorku na drážkované straně držáku. Povrch vzorku nesmí vykazovat žádné dutiny, praskliny nebo jiné defekty. Neslisovaný prášek vzorku se z držáku odstraní a rovněž drážkovaná strana držáku vzorku musí být před vložením do difraktometru bez volných částic.

Při vlastním měření se odstraní kryt difraktometru a při zavřených krytkách rentgenové lampy se vloží vzorek tak, aby drážka na držáku vzorku splývala s drážkou na goniometrické ose rotace. Na přístroj se opět nasadí kryt tak, aby se nepohnulo vzorkem. Spustí se přístroj a nastaví se hodnota úhlu 2 theta na 16,900°. Krytky na rentgenové lampě se co nejvíce otevírají.

Po 30 sekundách se kolébkový přepínač přepne na měření a zápis dat. Poté se goniometr nastaví na úhel 2 theta o velikosti 17,810° a měření se opakuje. Další měření se provádí při úhlech 2 theta 24,100° a 25,100°. Po skončení měření
se zavřou krytky rentgenové lampy a pokud nejsou žádné další vzorky k měření, přístroj se vypne.

8.3.2.5 Vyhodnocení a uvádění výsledků zkoušky

Vyhodnotí se reprezentativní počet impulzů za 1 sekundu [cps] pro jednotlivé měřené úhly. Počet impulzů obdržených při úhlu $2 \theta = 16,900^\circ$ se odečte od počtu impulzů získaných při úhlu $2 \theta = 17,810^\circ$. Rozdíl těchto hodnot se rovná intenzitě [cps] odpovídající určitému procentuálnímu obsahu hexogenu; z kalibrační křivky se pak získá koncentrace hexogenu ve vzorku. Podobně se odečte počet impulzů obdržených při úhlu $2 \theta = 24,10^\circ$ od počtu impulzů při úhlu $2 \theta = 25,10^\circ$ a daný rozdíl odpovídá intenzitě (a tedy i obsahu) alfa-oktogenu. Z kalibrační křivky se poté stanoví koncentrace alfa-oktogenu ve vzorku. Pokud je koncentrace hexogenu ve vzorku vyšší než 1 %, provede se oprava obsahu alfa-oktogenu. Pro tento účel se z třetí kalibrační křivky (závislost intenzity při $2 \theta = 25,100^\circ$ na koncentraci hexogenu) odečte počet impulzů [cps] odpovídající zjištěné koncentraci hexogenu. Tato oprava se odečte od počtu impulzů dříve zjištěných u alfa-oktogenu a z kalibrační křivky alfa-oktogenu se stanoví skutečný obsah alfa-oktogenu ve vzorku.

8.3.3 Stanovení obsahu hexogenu kolorimetrickou (spektrofotometrickou) metodou

8.3.3.1 Princip metody

Principem je interakce hexogenu a nitroprusidu sodného v alkalickém vodném acetonu za vzniku zeleného roztoku s absorpčním pásem od 625 nm do 635 nm, jehož optická hustota se měří speciálním spektrofotometrem. Za použitých podmínek stanovení oktogen s daným činidlem nereaguje. Kvantifikace se provádí metodou kalibrační křivky sestavené na základě výsledků měření oktogenu ve vzorku. Pro přesnost stanovení je nezbytné přesně dodržovat podmínky analýzy.

8.3.3.2 Chemikálie a činidla

Vodný 50% aceton připravený smícháním stejných objemových dílů vody a acetonu o teplotě $(20 \pm 2)^\circ$ C.

Roztok nitroprusidu sodného připravený rozpuštěním $(0,16 \pm 0,001)$ g nitroprusidu sodného ve vodě na celkový objem roztoku 300 ml. Musí se připravovat každý den čerstvě.

Roztok hydroxidu sodného o koncentraci $(0,250 \pm 0,002)$ M.

Oktogen bez obsahu hexogenu. Do papírové extrakční patrony se navádí (25 ± 1) g oktogenu Typ III a extrahuje se 500 ml vodného acetonu. Po ochlazení se odfiltruje vyextrahovaný oktogen a promýje se nejprve vodním acetonem a poté vodou. Ověří se, zda extrakcí nevznikly citlivé polymorfy oktogenu a suší se dvě hodiny při teplotě $(103 \pm 2)^\circ$ C.

8.3.3.3 Přístroje a zařízení

Vhodný UV/VIS spektrofotometr. Lázeň voda-led.
8.3.3.4 Postup zkoušky

Vzorek o hmotnosti (10 ± 0,1) g, sušený v sušárně po dobu dvou hodin při teplotě (103 ± 2) °C, se nasypé do papírové extrakční patrony a extrahuje se ve vodní lázní prostřednictvím 50 ml vodného acetonu s použitím trubice pro extrakci právou a baňky s plochým dnem na objem 100 ml jako kondenzátoru par.

Po skončení extrakce se nechá obsah baňky za občasného promíchání ochladit na teplotu okolí. Extrakční kapalina se doplní acetonem na objem 55 ml, přičemž přídavek nemá být větší než 5 ml acetonu.

Kousek skleněné trubičky vyplněné skelnou vatou se pomocí krátké pryžové hadičky nasadí na špičku pipety o objemu 5 ml. S použitím takového filtra se odpipetuje 5 ml extraktu vzorku do baňky s párovou lázní prostřednictvím 50 ml vodného acetonu s teplotou 4 °C.

Po skončení extrakce se nechá obsah baňky za občasného promíchání ochladit na teplotu okolí. Extrakční kapalina se doplní acetonem na objem 55 ml, přičemž přídavek nemá být větší než 5 ml acetonu.

8.3.3.5 Výpočet a uvádění výsledků zkoušky

Procentuální obsah hexogenu ve vzorku se stanoví ze vztahu:

\[
\% \text{ hexogenu} = W_I \times 10
\]

kde \(W_I \) je hmotnost hexogenu ve vzorku [g].

8.3.4 Stanovení obsahu alfa-oktogenu mikroskopickou metodou

8.3.4.1 Princip metody

Malé množství vzorku se disperguje v kapalině o indexu lomu 1,563 ± 0,001 při teplotě 23 °C a přítomně krystaly alfa-oktogenu se detekují pomocí polarizačního mikroskopu. Metoda je vhodná pro krystaly mající největší rozměr větší než 30 μm nebo nejmenší rozměr větší než 5 μm.

Za nejmenší rozměr krystalu viditelný pod mikroskopem se pro účely této metody považuje rozměr kolmý ke směru největšího rozměru. Za velký krystal alfa-oktogenu se považuje krystal o největším rozměru větší než 120 μm nebo o nejmenším rozměru větší než 10 μm.
8.3.4.2 Chemikálie a činidla
Imerzní kapalina připravená přidáváním 1-bromnaftalenu k brombenzenu až do stavu, kdy index lomu směsi získá hodnotu 1,563 ± 0,001 při 23 °C.

8.3.4.3 Přístroje a zařízení
Polarizační mikroskop s 60násobným až 90násobným zvětšením, opatřený otáčivým stolkiem, připojitelným mechanismickým držákem a okulárem s kalibrovaným čtvercovým rastrem. Rastr se používá pro vymezení zorného pole a stanovení velikosti krystalů.

8.3.4.4 Postup zkoušky
Z různých míst vzorku se po malých dávkách odebere přibližně 2g navážka, která se nasype do kádinky o objemu 10 ml a nechá vysušit v sušárně při teplotě (103 ± 2) °C po dobu dvou hodin. Malé množství vysušeného vzorku se smoci minimálním množstvím imerzní kapaliny. Část smočeného vzorku se odebere a spolu s imerzní kapalinou se přenese na podložní sklíčko. Sklíčko se uchytí na mechanický držák a okraj směsi krystalů se posune do zorného pole mikroskopu s nastaveným polarizátorem.

V zorném poli mikroskopu se stanovi celkový počet krystalů libovolného typu, které jsou obsaženy v rastru a které mají největší rozměr větší než 30 μm nebo nejmenší rozměr větší než 10 μm. Krystaly alfa-modifikace ve směsi krystalů se identifikují otáčením stolku mezi dvěma polohami zatemnění v 90° rozestupu, přičemž při nejméně jedné z nich krystaly alfa-oktogenu zmiří. Spočítají se krystaly alfa-oktogenu. Pokud jejich největší rozměr překročí 120 μm nebo jejich nejmenší rozměr přesáhne 10 μm, zaznamená se jejich velikost. Otáčivý stolek se vrátí do své původní pozice a mechanický držák sklíčka se posune do dalšího zorného pole. Se zkoumáním se pokračuje až do dosažení počtu 200 spočítaných krystalů. Poté se připraví vzorky na nová podložní sklíčka a stanovení se opakuje až do spočítání potřebného počtu krystalů.

8.3.4.5 Vyhodnocení a uvádění výsledků zkoušky
Stanoví se a do protokolu se uvede:

a) počet krystalů alfa-oktogenu o největších rozměrech v rozsahu 30 μm až 120 μm na 600, 1 000 a 2 000 krystalů vzorku oktogenu,
b) počet krystalů alfa-oktogenu s nejmenším rozměrem větším než 10 μm nebo největším rozměrem větším než 120 μm.

8.3.5 Stanovení obsahu alfa-oktogenu infračervenou spektrofotometrií
8.3.5.1 Principe metody
Vzorek výbušniny se rozetře za přítomnosti čistého parafínového oleje a obsah alfa-oktogenu ve vzniklé kašovité hmotě se stanoví IČ spektrofotometrií.

8.3.5.2 Chemikálie a činidla
Čistý parafínový olej.

8.3.5.3 Přístroje a zařízení
Dvoupaprskový IČ spektrofotometr se zapisovačem.

Leštěné destičky z kamenné soli o rozměrech (40 × 40 × 5) mm.
Hliníková, olověná nebo teflonová fólie o nominální tloušťce 0,05 mm.

Kulový mlýn o vnitřním průměru přibližně 130 mm (vnitřní objem přibližně 1 litr) s těsnícím víčkem, obsahující dvacet keramických kuliček o průměru 25 mm a pět kuliček o průměru 20 mm.

8.3.5.4 Postup zkoušky

Keramické kuličky se nasypou do čisté a suché nádoby kulového mlýna a pomocí injekční stříkačky se přidají 2,0 ml čistého parafínového oleje. Nádobou se protřepává, až jsou všechny kuličky a vnitřní povrch nádoby pokryty vrstvou oleje. Poté se do mlýna přidá (4 ± 0,01) g vzorku oktogenu sušeného v sušárně po dobu dvou hodin při teplotě (103 ± 2) °C a vzorek se měle (30 ± 1) minut rychlosti přibližně 80 otáček za minutu. Mletí musí být prováděno bez přítomnosti obsluhy.

Po skončení mletí se malý klínek vzniklé pasty nanese na střed destičky z kamenné soli. Dva tenké pásky hliníkové, olověné nebo teflonové fólie o šířce maximálně 5 mm a tloušťce 0,05 mm se uloží na protilehlé okraje destičky. Destička s distančními pásky se překryje jinou destičkou a mírně se stlačí, až se pasta rozprostře po středu destičky a vrchní destička pevně spočívá na obou páscích.

Takto připravená kyveta se vzorkem se vloží do měrného paprsku dvoupaprskového IČ spektrofotometru a do referenčního paprsku se vloží analogicky připravená kyveta obsahující čistý beta-oktogen. Spektrofotometr se opticky nastaví tak, aby při vlnění 995 cm⁻¹ poskytoval vzor ek 90% prostupu záření. Poté se proměří spektrum v rozsahu vlnění 1 100 cm⁻¹ až 950 cm⁻¹.

Při nepřítomnosti hexogenu by spektrum vzorku nemělo vykazovat žádnou absorpci v pásmu 1 035 cm⁻¹ až 1 030 cm⁻¹ kromě normální absorpce odpovídající čistému beta-oktogenu. Pokud je hexogen přítomen, pak ke stejnému vyhodnocení může být použit rozsah vlnění mezi 850 cm⁻¹ až 848 cm⁻¹, ale citlivost stanovení přítomnosti alfa-oktogenu je v této oblasti menší.

Měřením píkové absorbance kalibračních standardů oktogenu se známým obsahem alfa-oktogenu v uvedených rozsazích vlnění lze sestavit kalibrační křivku pro stanovení procentuálního obsahu alfa-oktogenu ve vzorku.

8.3.5.5 Vyhodnocení a uvádění výsledků zkoušky

Do protokolu se uvede procentuální obsah alfa-oktogenu ve vzorku.

8.3.6 Stanovení bodu tání pomocí Maquenneho bloku

8.3.6.1 Princip metody

Za bod tání se při této zkoušce považuje minimální teplota, při níž dojde k tání vzorku výbušniny za méně než 30 sekund od vložení vzorku na vyhřívaný Maquenneho blok. Bod tání se stanovuje ve srovnání s bodem tání standardní výbušniny.

8.3.6.2 Chemikálie a činidle

Standardní vzorek oktogenu.

8.3.6.3 Přístroje a zařízení

Maquenneho blok s elektrickým vyhříváním a stíněním proti proudění vzduchu. Teploměr s dělením po 0,5 °C.
8.3.6.4 Postup zkoušky

Několik gramů homogenizovaného vzorku se suší při teplotě 100 °C po dobu jedné hodiny a poté se rozetře na jemný prášek.

Baňka teploměru musí být umístěna ve středové části Maquenneho bloku a jeho sloupec musí být co nejkratší. Poloha baňky na bloku se zaznamená. Povrch bloku musí být dokonale čistý.

Ohřev bloku se nastaví tak, aby rychlost vzrůstu teploty v oblasti očekávaného bodu tání byla 1 °C za dvě až tři minuty.

Na blok se nasype velmi malé množství vzorku tak, aby krystaly byly v kontaktu s baňkou teploměru. Během méně než 30 sekund dojde k jejich tavení.

Zkouška se zopakuje se standardní výbušninou se stejným teploměrem umístěným přesně na stejném místě jako u měření vzorku.

8.3.6.5 Výpočet a uvádění výsledků zkoušky

Bod tání vzorku \(t \) se stanoví ze vztahu:

\[
 t = t_i + t_0 - t_2
\]

(25),

kde \(t \) - bod tání zkoušeného materiálu [°C],
\(t_0 \) - známý bod tání standardní výbušniny [°C],
\(t_i \) - pozorovaná teplota tání zkoušeného materiálu [°C],
\(t_2 \) - pozorovaná teplota tání standardní výbušniny [°C].

8.3.7 Stanovení bodu tání Fisher–Johnsovou metodou

8.3.7.1 Princip metody

Principem je stanovení teploty, při které dojde u vzorku oktogenu k přechodu z pevného do kapalného stavu.

8.3.7.2 Chemikálie a činidla

Reprezentativní vzorek oktogenu ze zkoušené šarže.

8.3.7.3 Přístroje a zařízení

Fisher–Johnsov přístroj s topnou deskou pro stanovení bodu tání.

Malá achátová třecí miska.

Krycí sklíčka o průměru 18 mm.

8.3.7.4 Postup zkoušky

Teploměr přístroje se kalibruje pomocí vhodných standardů se stanovenými body tání. Vzorek se rozetře v achátové misce na jemný prášek a jeho malá část o hmotnosti přibližně 0,05 g se umístí mezi dvě čistá krycí sklíčka o průměru 18 mm. Sklíčka se opatrně, ale pevně stlačí proti sobě a vloží se do kruhové prohlubně v topné desce přístroje. Zapne se vyhřívání přístroje a teplota se nechá rychle vzrůstat až k dosažení hodnoty přibližně 15 °C pod očekávaným bodem tání a poté se rychlost zahřívání sníží na přibližně 1 °C za minutu.
8.3.7.5 Vyhodnocení a uvádění výsledků zkoušky

Když vzorek začne tát, zaznamená se teplota na teploměru a po opravě na kalibraci teploměru se uveďe do protokolu jako bod tání vzorku.

8.3.8 Stanovení bodu tání metodou Heraeus Fus-O-Mat

8.3.8.1 Přístroje a zařízení

Přístroj pro stanovení bodu tání metodou Heraeus Fus-O-Mat.

8.3.8.2 Postup zkoušky

Vzorek se jemně rozetře v achátové misce na jemné prášek a jeho malá část o hmotnosti 5 mg až 10 mg se nasypne do mikrozkumavky o průměru 1 mm tak, aby vznikl sloupec vysoký 3 mm až 5 mm.

Termočlánek s pláštěm z nerezové oceli se vloží do vzorku až na samé dno mikrozumavky. Mikrozumavka s termočlánkem se poté vloží do topné pícky, nastaví se odpovídající rozsah zapisovače přístroje Fus-O-Mat a spustí se zahřívání.

Zahřívání může do dosažení teploty 30 °C až 40 °C pod očekávaným bodem tání probíhat rychlostí 100 °C/min. Poté se rychlost zahřívání sníží na 10 °C/min a pomocí zapisovače se zaznamenává teplotní křivka průběhu tání.

Po dokončení procesu tání vzorku, který je u oktogenu spojen se začátkem rozkladu, se vypne zahřívání a se očistí acetonem a uloží do čisté zkumavky. Použitá mikrozumavka se vyřadí.

8.3.8.3 Vyhodnocení a uvádění výsledků zkoušky

Proces tání se na záznamu zkoušky (závislost teploty na čase) projeví dočasným poklesem rychlosti nárůstu teploty (bod koalescence) následovaný exotermickou rozkladnou reakcí oktogenu. Bod tání se poté vyjádří jako teplota, při které se objeví první příznaky přechodu trhaviny do kapalného stavu.

8.3.9 Stanovení bodu tání metodou Townsona a Mercera

8.3.9.1 Princip metody

Bod tání se stanoví u jemně rozetřeného vzorku oktogenu obsaženého v kapilární trubičce, a to s použitím elektricky vyhřívaného přístroje. Bodem tání je teplota, při které se objeví první příznaky přechodu trhaviny do kapalného stavu.

8.3.9.2 Přístroje a zařízení

Elektricky vyhřívaný přístroj pro stanovení bodu tání.

Kapilární trubičky dodávané výrobcem přístroje.

Skleněné teploměry s rozsahem 140 °C až 300 °C dělené po 0,5 °C.

8.3.9.3 Postup zkoušky

Přibližně 1 g reprezentativního vzorku se rozetře na jemný prášek libovolnou schálenou metodou a nechá se sušit v sušárně při teplotě (103 ± 2) °C po dobu čtyř hodin. Rozetřený vzorek se nasypne do kapilární trubičky v takovém množství, aby po sklepání vytvořil sloupec o výšce přibližně 5 mm. Přístroj se nechá vyhřívat a trubička se vzorkem se do ní vloží při dosažení teploty 250 °C. Teplota se dále zvyšuje.
rychlostí 2 °C až 3 °C za minutu a zaznamená se hodnota, při nichž byly zpozorovány první příznaky tání (objevení kapek). Zjištěná teplota se opraví na kalibraci teploměru.

8.3.9.4 Vyhodnocení a uvádění výsledků zkoušky

Do protokolu se jako bod tání uvede teplota (opravená), při které se objevily první příznaky přechodu oktagenu do kapalného stavu.

8.3.10 Stanovení obsahu látek nerozpustných v dimetylsulfoxidu

8.3.10.1 Princip metody

Vzorek se rozpuští v dimetylsulfoxidu, roztok se přefiltruje a zbytek na filtre se vysuší a zváží.

8.3.10.2 Chemikálie a činidla

Dimetylsulfoxid.

8.3.10.3 Přístroje a zařízení

Kádinka o objemu 250 ml.

Křemenný filtrační kelímek s porovitostí 20 μm až 40 μm.

Vodní lázeň.

8.3.10.4 Postup zkoušky

Do 250 ml kádinky se s přesností na 0,1 g naváží (10 ± 2) g suchého vzorku (hmotnost \(m \)). Vzorek se rozpuští v 50 ml dimetylsulfoxidu, přičemž se kádinka zahřívá ve vodní lázni. Roztok se přefiltruje přes filtrační kelímek, který se předem přežíhá při teplotě (700 ± 50) °C a následně přesné zváží (hmotnost \(m_1 \)). Kelímek se po filtraci promyje 50 ml acetonu, vysuší se při teplotě 100 °C po dobu jedné hodiny a zváží se s přesností na 0,1 mg (hmotnost \(m_2 \)).

8.3.10.5 Výpočet a uvádění výsledků zkoušky

Procentuální obsah látek nerozpustných v dimetylsulfoxidu se vypočítá ze vztahu:

\[
\text{% nerozpustných látek} = \frac{(m_2 - m_1) \times 100}{m} \quad (26),
\]

kde \(m \) - navážka vzorku oktagenu [g],
\(m_1 \) - hmotnost prázdného filtračního kelímku [g],
\(m_2 \) - hmotnost filtračního kelímku s nerozpustným zbytkem [g].

Tato zkouška se může provádět i s vlhkým vzorkem oktagenu (s obsahem vlhkosti přibližně do 20 %), přítomnost vlhkosti však musí zdůvodněna v protokolu o zkoušce. Procentuální obsah látek nerozpustných v dimetylsulfoxidu se pak vypočítá ze vztahu:

\[
\text{% nerozpustných látek} = \frac{(m_2 - m_1) \times 100}{m \times (100 - H)} \quad (27),
\]

kde \(m \) - navážka vlhkého vzorku [g],
\(m_1 \) - hmotnost prázdného filtračního kelímku [g],
\(m_2 \) - hmotnost filtračního kelímku s nerozpustným zbytkem [g],
\(H \) - obsah vlhkosti ve vzorku [%].
8.3.11 Stanovení obsahu látek nerozpustných v acetonu – metoda 1

8.3.11.1 Princip metody
Vzorek se rozpustí v horkém acetonu, vzniklý roztok se přefiltruje přes filtrační kelímek se skleněnou fritou a zbytek na filtru se vysuší a zváží.

8.3.11.2 Chemikálie a činidla
Aceton, technický.

8.3.11.3 Přístroje a zařízení
Kádinka o objemu 600 ml.
Filtrací kelímek střední pórovitosti z tepelně odolného skla pyrex.
Muflová pec.
Analytické váhy.
Motor poháněný stlačeným vzduchem nebo tyčinka na míchání.
Topná deska vyhřívaná párou.

8.3.11.4 Postup zkoušky
S přesností na 0,001 g se odváží přibližně 10 g vzorku (hmotnost \(W \)), nasype se do 600 ml kádinky a přidá se 400 ml přefiltrovaného acetonu. Kádinka se překryje hodinovým sklíčkem a položí se na parní lázeň. Směsí se míchá, až se všechn oktogen rozpustí. V případě potřeby je možno přidat další aceton. Roztok oktogenu se přefiltruje přes filtrační kelímek, který byl předtím přežíhán v muflové peci při teplotě \((700 \pm 20) \) ºC a zvážen s přesností na 0,000 1 g (hmotnost \(B \)). Případný nerozpuštěný zbytek v kádince se na filtrační kelímek spláchne proudem acetonu ze střičky. Nérozpustný zbytek v kelímku se třikrát promyje 20 ml acetonu a odsává se tak dlouho, až není patrný zápach acetonu. Kelímek se poté suší v sušárně při teplotě \((100 \pm 5) \) ºC po dobu 30 minut, ochladí se v exsikátoru na teplotu okolí a zváží s přesností na 0,001 g (hmotnost \(A \)). Kelímek s nerozpuštěným zbytkem se dále použije pro stanovení obsahu nerozpuštěných anorganických látek.

8.3.11.5 Výpočet a uvádění výsledků zkoušky
Procentuální obsah látek nerozpuštěných v acetonu se stanoví ze vztahu:

\[
\% \text{látek nerozpuštěných v acetonu} = \frac{(A-B) \times 100}{W}
\]

kde \(A \) - konečná hmotnost filtračního kelímku s nerozpuštěnými látkami [g],
\(B \) - hmotnost prázdného filtračního kelímku [g],
\(W \) - navážka vzorku oktogenu [g].

8.3.12 Stanovení obsahu látek nerozpuštěných v acetonu – metoda 2

8.3.12.1 Princip metody
Vzorek se rozpustí v horkém acetonu, vzniklý roztok se přefiltruje přes filtrační kelímek se skleněnou fritou a zbytek na filtru se vysuší a zváží.
8.3.12.2 Chemikálie a činidla
Aceton, o čistotě p.a.

8.3.12.3 Přístroje a zařízení
Filtrační kelímek se skleněnou fritou o pórovitosti G4 (P16).

8.3.12.4 Postup zkoušky
Vzorek o ekvivalentní hmotnosti (10,0 ± 0,1) g se nasype do kádinky o objemu 1 litr a přidá se 600 ml až 700 ml acetonu. Kádinka se přikryje hodinovým sklíčkem a zahřívá ve vroucí vodní lázně do úplného rozpuštění vzorku. Horký roztok se přefiltuje přes předem zvážený filtrační kelímek (hmotnost \(W_1 \)) tak, aby se případný nerozpustěný podíl kvantitativně převedl na fritu. Kelímek se promyje 100 ml horkého acetonu, aby se rozpuštily případné zbylé krystaly oktagenu na fritě, poté se 30 až 35 minut suší při teplotě (103 ± 2) °C, nechá se ochladit v exsikátoru a znovu se zváží (hmotnost \(W_2 \)).

8.3.12.5 Výpočet a uvádění výsledků zkoušky
Procentuální celkový obsah látek nerozpustných v acetonu se stanoví ze vztahu:

\[
\% \text{ látek nerozpustných v acetonu} = \left(W_2 - W_1 \right) \times 10^{29},
\]

kde \(W_1 \) - hmotnost prázdného filtračního kelímku [g],
\(W_2 \) - konečná hmotnost filtračního kelímku s nerozpustěnými látkami [g].

Pokud výsledek překročí stanovenou mez, vzorek nerozpustného podílu je nutno uchovat pro další zkoumání.

8.3.13 Stanovení obsahu látek nerozpustných v acetonu – metoda 3

8.3.13.1 Princip metody
Vzorek výbušniny se při stanovení rozpustí v acetonu, přefilteruje se přes vrstvu papíroviny, ta se následně spálí při 600 °C a stanoví se množství nespáleného zbytku.

8.3.13.2 Chemikálie a činidla
Aceton, o čistotě p.a.

8.3.13.3 Přístroje a zařízení
Papírovina, která se připraví tak, že s řízni filtračního papíru a vody se třepe ve vysoké láhvi, až dojde k rozpadnutí papíru. Vzniklá papírovina se nanese na perforovaný porcelánový disk v běžné filtrační nálevce (jako při přípravě Goochova kelímku) a poté se promyje acetonem.

8.3.13.4 Postup zkoušky
Vzorek o ekvivalentní hmotnosti sušiny (10,0 ± 0,1) g se za tepla rozpustí v 600 ml až 700 ml acetonu a horký roztok se za odsávání přefilteruje přes připravený filtr s vrstvou papíroviny. Filtr se poté důkladně promyje horkým acetonem a v odsávání se pokračuje ještě přibližně jednu minutu pro odstranění většiny zbytkového acetonu.

Papírovina se zachycenými nerozpustnými částicemi se vloží do předem zváženého kelímku (hmotnost \(W_3 \)). Vnitřek nálevky se očistí kouskem filtračního papíru, který se rovněž vloží do kelímku. Papírovina se v kelímku zapálí a po shoření všech
organických složek se kelímek v digestoři při zapnutém odsávání přežíhá při teplotě (600 ± 10) °C po dobu 10 až 15 minut. Kelímek se po přežíhání nechá ochladit v exsikátoru na teplotu okolí a znovu se zváží (hmotnost \(W_4\)).

8.3.13.5 Výpočet a uvádění výsledků zkoušky

Procentuální obsah látek anorganických nerozpustných v acetonu se stanoví ze vztahu:

\[
\% \text{ anorganických látek nerozpustných v acetonu} = \frac{(W_4 - W_3) \times 10}{W_3} \quad (30),
\]

kde \(W_3\) - hmotnost prázdného filtračního kelímku [g], \(W_4\) - konečná hmotnost filtračního kelímku s nerozpustěnými látkami po přežíhání [g].

Jestliže výsledek překročí stanovenou mez, vzorek nerozpustného podílu je nutno uchovat pro další zkoumání.

8.3.14 Stanovení obsahu pískovitých částic – metoda 1

8.3.14.1 Princip metody

Principem metody je extrakce výbušniny přes síto pomocí vhodného rozpouštědla a zjištění charakteru zbylých pískovitých částic.

8.3.14.2 Chemikálie a činidla

Dimetylsulfoxid.

8.3.14.3 Přístroje a zařízení

Kovová síta s velikostí ok 0,5 mm a 0,25 mm a doporučeným průměrem 5 cm.

8.3.14.4 Postup zkoušky

Síto s velikostí ok 0,5 mm se položí na síto s velikostí ok 0,25 mm, na vrchní síto se nasyp (50 ± 2) g vzorku a extrahuje se dimetylsulfoxidem. Po skončení extrakce se sesbírají částice zbývající na obou sítech. Ostrohranný charakter částic se ovlivňuje jejich postupným ukládáním mezi dvě skleněné desky, mezi nimiž se pak třou. Pískovité částice budou dřít a škrábat sklo. Stanoví se počet pískovitých částic zachycených na každém sítě.

8.3.14.5 Vyhodnocení a uvádění výsledků zkoušky

Do protokolu se uvede počet pískovitých částic zachycených na sítě s velikostí ok 0,5 mm (označuje se \(n_1\)) a počet pískovitých částic zachycených na sítě s velikostí ok 0,25 mm (označuje se \(n_2\)).

8.3.15 Stanovení obsahu pískovitých částic – metoda 2

8.3.15.1 Princip metody

Výbušnina se extrahuje s acetonem v Soxhletově extraktoru a následně se stanoví počet částic zachycených na sítech s velikostí ok 420 μm a 250 μm.

8.3.15.2 Chemikálie a činidla

Aceton, o čistotě p.a.

8.3.15.3 Přístroje a zařízení

Soxhletův extraktor.
8.3.15.4 Postup zkoušky

Vzorek o ekvivalentní hmotnosti sušiny (50 ± 0,5) g se nasypne do extrakční patrony a vloží do Soxhletova extraktoru. Do baňky se přidá dostatečné množství acetonu a vzorek se extrahuje na parní lázně až do úplného rozpuštění. Případný nerozpustný zbytek v extrakční patroně se nasypne na síto s velikostí ok 250 μm, proseje se a zaznamená se počet zachycených částic. Poté se zachycené částice přenesou na síto s velikostí ok 420 μm, proseje se a opět se zaznamená počet částic zachycených na tomto síťě.

8.3.15.5 Vyhodnocení a uvádění výsledků zkoušky

Do protokolu se uveďe počet částic zachycených na síť s velikostí ok 250 μm a počet pískovitých částic zachycených na síť s velikostí ok 420 μm.

8.3.16 Stanovení obsahu pískovitých částic zachycených na sítech 250 μm a/nebo 63 μm

8.3.16.1 Princip metody

Výbušnina se extrahuje s acetonem v upraveném Soxhletově extraktoru. Zbytek po extrakci se zváží a zjistí se charakter případných pískovitých částic.

8.3.16.2 Chemikálie a činidla

Aceton, o čistotě p.a.

8.3.16.3 Přístroje a zařízení

Upravený Soxhletův extraktor tvořený extrakční nádobou opatřenou vhodným kondenzátorem par a obsahující vysoké válcové síto s velikostí ok 63 μm a o rozměrech 90 mm × 38 mm, uložené na trianglu ve skleněné misce (viz obrázek 4).

Síta s velikostí ok 63 μm a 250 μm.

8.3.16.4 Postup zkoušky

Vzorek o ekvivalentní hmotnosti sušiny (50 ± 1) g se nasypne do vysokého válcového síta s velikostí ok 63 μm, vloží do Soxhletova extraktoru s acetonem a vloží do párou vyhřívané vodní lázně. Aceton se nechá tak dlouho refluxovat, až rozpustí všechn oktogen. Síto se poté odstraní a vysuší.

Zachycený nerozpustný zbytek se přesypne na hodinové sklíčko předem zvážené s přesností na 0,001 g (hmotnost W7) a vše se zváží (hmotnost W8). Zbytek se potom přesypne na síto s velikostí ok 250 μm, proseje se a zjistí se přítomnost pískovitých částic zachycených na síť.

8.3.16.5 Výpočet a uvádění výsledků zkoušky

Procentuální obsah pískovitých částic zachycených na síť s velikostí ok 63 μm se vypočítá ze vztahu:

\[
\% \text{ pískovitých částic na síť 63 μm} = \left(W_8 - W_7 \right) \times 2
\]

kde \(W_7 \) - hmotnost prázdného hodinového sklíčka [g],

\(W_8 \) - hmotnost plněného hodinového sklíčka [g].
\[W_e \] - hmotnost hodinového sklíčka s nerozpuštěnými látkami [g].

Do protokolu se zaznamená i počet pískovitých částic zachycených na síť s velikostí ok 250 μm.

OBRÁZEK 4 – Upravený Soxhletův extraktor pro stanovení obsahu pískovitých částic

8.3.17 Stanovení obsahu popela – metoda 1

8.3.17.1 Princip metody

Principem metody je přežíhání zbytku po stanovení látek nerozpuštěných v dimetylsulfoxidu (viz čl. 8.3.10) a zjištění hmotnosti zůstatku.

8.3.17.2 Přístroje a zařízení

Muflová pec nastavená na (700 ± 50) °C.

8.3.17.3 Postup zkoušky

Nerozpuštěný zbytek, získaný postupem popsaným v čl. 8.3.10, se v původním křemenném kelímku žíhá v muflové peci do červeného žáru při teplotě (700 ± 50) °C. Přežíhaný kelímek se nechá ochladit v exsikátoru a zváží se s přesností na 1 mg.
8.3.17.4 Výpočet a uvádění výsledků zkoušky

Procentuální obsah popela ve vzorku se stanoví ze vztahu:

\[\% \text{ popela} = \frac{(m_2 - m_1) \times 100}{m} \]

(32),

kde \(m_1 \) - hmotnost prázdného kelímku [g],
\(m_2 \) - hmotnost kelímku po přežíhání [g],
\(m \) - původní navážka vzorku oktogenu před extrakcí [g].

8.3.18 Stanovení obsahu popela – metoda 2

8.3.18.1 Princip metody

Principem metody je přežíhání zbytku po stanovení látek nerozpustných v acetonu (viz čl. 8.3.11) a zjištění hmotnosti zůstatku.

8.3.18.2 Přístroje a zařízení

Mušlová pec.
Analytické váhy.

8.3.18.3 Postup zkoušky

Kelímek se zbytkem po stanovení obsahu látek nerozpustných v acetonu dle čl. 8.3.11 se přežíhá v mušlové peci při teplotě \((700 \pm 10) ^\circ C\) po dobu \((30 \pm 5)\) minut, nechá se ochladit v exsikátoru a zváží se s přesností na 0,000 1 g.

8.3.18.4 Výpočet a uvádění výsledků zkoušky

Procentuální obsah anorganických nerozpustných látek ve vzorku se stanoví ze vztahu:

\[\% \text{ anorganických nerozpustných látek} = \frac{(C - B) \times 100}{W} \]

(33),

kde \(C \) - hmotnost kelímku s obsahem po přežíhání [g],
\(B \) - hmotnost prázdného kelímku [g],
\(W \) - původní navážka vzorku oktogenu [g].

8.3.19 Stanovení kyselosti nebo alkality

8.3.19.1 Princip metody

Vzorek výbušniny se při stanovení rozpustí v okyseleném acetonu a přítomná kyselost nebo alkalita se stanoví zpětnou titrací roztokem hydroxidu barnatého.

8.3.19.2 Chemikálie a činidla

Roztok chloridu draselného, který se připraví přidáním 5 ml nasyceného roztoku KCl do 1 litru převařené vody a uchovává se tak, aby byl chráněn před působením vzdušného oxidu uhličitého.

Okyselený aceton připravený přidáním 1 ml 0,1M kyseliny octové do 1 litru převařeného a zchlazeného acetonu. Uchovává se tak, aby byl chráněn před působením vzdušného oxidu uhličitého.

Odměrný roztok hydroxidu barnatého o koncentraci 0,01 M. Uchovává se tak, aby byl chráněn před působením vzdušného oxidu uhličitého.
Indikátorový roztok kresolové červené (0,3% roztok v lihu denaturovaném metanolem).

Vzduch nebo dusík s odstraněným obsahem oxidu uhličitého (průchodem sérií alkalických promývaček).

8.3.19.3 Postup zkoušky

Do každé ze tří očíslovaných baněk na stanovení jodového čísla o objemu 500 ml se nalije voda, nechá se 5 minut vařit, poté se vylije a baňky se nechají ochladit. Do baněk 1 a 3 se naváží vzorek oktogenů o ekvivalentní hmotnosti sušiny (3,0 ± 0,1) g a do všech baňek se přidá 100 ml okyseleného acetonu. Baňky se opatří chladiči a jejich obsah se vaří ve vroucí vodní lázní, až se všechn oktogen rozpustí. Poté se chladiče odstraní a do baněk se za stálého míchání přidá 100 ml roztoku chloridu draselného. Baňky se zazátkují a rychle se ochladí proudem studené vody.

Proud plynu procházející přes promývačky se trubičkou zavede do baňky 1 a plyn bez obsahu oxidu uhličitého se nechá baňkou probublávat. Přidá se 10 kapek indikátorového roztoku a titruje se roztokem hydroxidu barnatého do bodu ekvivalence projevujícího se stálým růžovým zbarvením. Kapalina nad sraženinou oktogenu v baňce 1 se zdekantuje a do baňky 2. Za probublávání plynom se obsah baňky znovu titruje hydroxidem barnatým (objem v bodě ekvivalence V_1) s přidáním dalších 10 kapek indikátoru.

Za stejných podmínek se zditruje obsah baňky 3 a stanoví se objem titračního činidla V_2 v bodě ekvivalence.

8.3.19.4 Výpočet a uvádění výsledků zkoušky

Pokud je rozdíl ($V_2 - V_1$) kladný, vzorek je kyselý. Pokud je tento rozdíl záporný, vzorek je alkalický.

Obsah kyselosti nebo alkality ve vzorku se vypočítá ze vztahu:

$$\text{obsah kyselosti nebo alkality [meq/kg]} = (V_2 - V_1) \times 6,67$$

kde

- V_2 - spotřeba odměrného roztoku při titraci obsahu baňky 1 po přidání obsahu baňky 2 [ml],
- V_1 - spotřeba odměrného roztoku při titraci obsahu baňky 3 [ml].

8.3.20 Stanovení kyselosti

8.3.20.1 Princip metody

Vzorek vybušniny se rozpustí v acetonu a přítomná kyselost se stanoví titrací roztokem hydroxidu sodného.

8.3.20.2 Chemikálie a činida

Aceton, o čistotě p.a.

Indikátorový roztok fenolftaleinu (1% roztok v etanolu) nebo metylové červené (0,1 g v 60 ml etanolu).

Odměrný 0,05M roztok hydroxidu sodného.

Destilovaná voda.

8.3.20.3 Přístroje a zařízení
ČOS 137608
1. vydání

Kádinka o objemu 800 ml.

Parní lázeň.

Byreta.

8.3.20.4 Postup zkoušky

Odváží se přibližně 10 g vysušeného vzorku s přesností na 0,001 g, nasype se do čisté kádinky o objemu 800 ml a přídá se 500 ml acetonu. Kádinka se umístí na parní lázeň a zahřívá se za občasného míchání až do úplného rozpuštění vzorku. Poté se přídá 100 ml destilované vody a 3 až 4 kapky indikátorového roztoku fenolftaleinu nebo metylčerveně a titruje se do bodu ekvivalence 0,05M odměrným roztokem hydroxidu sodného. Stejným postupem, ale bez použití vzorku oktogenu, se provede slepé stanovení.

8.3.20.5 Výpočet a uvádění výsledků zkoušky

Obsah kyselosti ve vzorku se vypočítá ze vztahu:

$$\text{obsah kyselosti [meq/kg]} = \frac{6 \times (S - B) \times M}{W}$$

kde

- S - spotřeba odměrného roztoku NaOH při titraci vzorku [ml],
- B - spotřeba odměrného roztoku při slepém stanovení [ml],
- M - molární koncentrace odměrného roztoku [mol/l],
- W - navážka vzorku [g].

8.3.21 Vakuový stabilitní test

Vakuový stabilitní test se provádí v souladu s postupem popsaným v ČOS 137601, čl. 6.4. Podmínky zkoušení oktogenu jsou definovány navážkou 5 g vzorku sušeného 4 hodiny při teplotě (103 ± 2) °C, teplotou zkoušky 120 °C a dobou zkoušky 40 hodin. V případě dovozu oktogenu ze zahraničí se přijímají i výsledky zkoušek provedených jinými aparaturami uvedenými ve STANAG 4284, který je touto kapitolou ČOS zaváděn do prostředí ČR.

8.3.22 Stanovení obsahu cyklohexanu plynovou chromatografií

8.3.22.1 Princip metody

Vzorek výbušniny se rozpustí v gama-butyrolaktonu (nebo acetonu) a obsah cyklohexanu se stanoví plynovou chromatografií.

8.3.22.2 Chemikálie a činidla

Gama-butyrolakton (doporučené rozpouštědlo) bez obsahu nečistot, které se chromatograficky překrývají s píkem cyklohexanu. Před použitím by měl být gama-butyrolakton frakčně předestilován za sníženého tlaku (přibližně 2,67 kPa) s odstraněním prvních 15 % a posledních 10 % destilátu a použitím zbytku ke zkoušce.

Aceton (alternativní rozpouštědlo), o čistotě p.a.

8.3.22.3 Přístroje a zařízení

Plynový chromatograf vyhovující následujícím požadavkům:
a) chromatografická kolona musí být temperovaná na teplotu přibližně 160 °C, regulovanou s přesností na 0,1 °C;
b) nastavení detektoru a zesilovače výstupního signálu musí být takové, aby 5,0 mm³ 0,001% roztoku cyklohexanu v gama-butyrolaktonu nebo acetonu vytvořilo signál odpovídající 75 % nastaveného rozsahu stupnice, hladina šumu byla menší než ±0,2 % rozsahu a odklon základní linie menší než 1 % za hodinu. Doporučeným způsobem detekce je plamenová ionizace;
c) použitá kolona musí být schopna dokonalého rozdělení cyklohexanu od gama-butyrolaktonu nebo acetonu za méně než 5 minut;
d) průtok nosného plynu musí být regulován s přesností ±1%.
Přesné injekční stříkačky schopné dávkovat 5,0 mm³ kapalného vzorku.

8.3.22.4 Postup zkoušky
8.3.22.4.1 Příprava kalibrační křivky
Pro přípravu kalibrační křivky se do odměrných baněk o objemu 100 ml naváží různá množství cyklohexanu pokrývající rozsah 0,001 g až 0,020 g. Baněky se po rysku doplní gama-butyrolaktonem nebo acetonem. Část každého připraveného kalibračního roztoku o objemu 5,0 mm³ se nastříkne do plynového chromatografu a vyhodnotí se výška píku nebo plocha pod píkem cyklohexanu. Ze získaných výsledků se vynese grafická závislost této odezvy (výška nebo plocha) na použité navážce cyklohexanu.

8.3.22.4.2 Analýza vzorku
Reprezentativní vzorek o hmotnosti přibližně 40 g se nasypne do čistého skleněné misky a nechá se sušit v sušárně při teplotě (103 ± 2) °C po dobu 2 hodin. Podíl vysušeného vzorku o hmotnosti (10 ± 0,1) g se (s případným zahřátím) rozpustí v 90 ml gama-butyrolaktonu nebo acetonu. Roztok se ochladí na teplotu okolí a přelije se do odměrné baňky o objemu 100 ml a použitým rozpouštědlem se doplní po rysku. Roztok vzorku o objemu 5,0 mm³ se nastříkne do plynového chromatografu a měří se výška píku nebo plocha pod píkem odpovídající cyklohexanu. Z kalibračního grafu se odečte množství cyklohexanu (Wf) odpovídající získané odezvě detektoru.

8.3.22.5 Výpočet a uvádění výsledků zkoušky
Procentuální obsah cyklohexanu ve vzorku se stanoví ze vztahu:

\[
\% \text{ cyklohexanu} = W_f \times 10
\]

kde \(W_f \) - hmotnost cyklohexanu ve vzorku [g].

8.3.23 Stanovení citlivosti k nárazu
Stanovení citlivosti oktogenu k nárazu se provádí postupem uvedeným v ČOS 137601, čl. 6.14. Výsledek se pro daný vzorek uvádí ve srovnání s výsledky pro čistý hexogen a pentrit stanovenými na stejné aparatuře a stejným postupem jako byl použit u vzorku oktogenu. Pro dodávky oktogenu ze zahraničí se přijímají i výsledky stanovené metodou popsanou ve STANAG 4284, který je touto kapitolou ČOS zaváděn do prostředí ČR.
9 Pentrit

9.1 Všeobecné požadavky

Účelem této kapitoly je stanovit takové požadavky na vlastnosti pentritu (PETN, pentaerythritoltetranitrátu), které zajistí jeho použitelnost pro vojenské účely, a zároveň tak poskytnout vhodnou základnu pro jeho dodávky a certifikaci v rámci NATO.

Tento standard vyžaduje použití látek a zkušebních postupů, které mohou ohrozit lidské zdraví. Musí být proto přijata taková odpovídající bezpečnostní opatření, která tato rizika snižují na nejmenší možnou míru. Je nezbytné se řídit informacemi uvedenými v bezpečnostních listech a požadavky zákonných předpisů.

Každý nový nebo modifikovaný výrobní proces musí být zaznamenán a údaje o něm musí být na vyžádání poskytnuty v dohodnutém rozsahu odběrateli. Takto vyrobený pentrit lze předat odběrateli až po odsouhlasení změn z jeho strany.

Pentrit, určený pro vojenské účely, musí splňovat kvalitativní požadavky uvedené v čl. 9.2 tohoto standardu (pokud se nejedná o materiál objednaný pro speciální účely), které jsou stanovovány postupy uvedenými v čl. 9.3. V protokolu o zkouškách musí být uvedeny výsledky zkoušek a použité metody zkoušení (vzorový protokol lze nalézt ve STANAG 4023, Annex C).

Pentrit musí být tvořen pentaerythritoltetranitrátem se sumárním chemickým vzorcem C₁₅H₆O₁₂N₄ a strukturním vzorcem uvedeným na obrázku 5.

\[
\begin{align*}
&\text{CH}_2\text{ONO}_2 \\
&\text{O}_2\text{NOH}_2\text{C}\cdots\text{C}\cdots\text{CH}_2\text{ONO}_2 \\
&\text{CH}_2\text{ONO}_2
\end{align*}
\]

OBRÁZEK 5 – Strukturní vzorec pentritu

9.2 Požadavky na kvalitu

Požadavky na fyzikálně-chemické vlastnosti pentritu jsou uvedeny v tabulce 8. Pokud je u některých požadavků uvedeno více metod zkoušení, výrobce může zvolit libovolnou z nich. Typ vybrané zkoušky však musí být uvěst do protokolu o zkoušce spolu se získanými výsledky.

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Požadovaná hodnota</th>
<th>Metoda zkoušení (viz čl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čistota</td>
<td>min. 98 % PETN</td>
<td>9.3.1</td>
</tr>
<tr>
<td>Bod tání [°C]</td>
<td>141,0 ± 1,0</td>
<td>9.3.2 nebo 9.3.3</td>
</tr>
<tr>
<td>Kyselost (jako HNO₃) [%], max.</td>
<td>0,01</td>
<td>9.3.4</td>
</tr>
<tr>
<td>Alkalita (jako Na₂CO₃) [%], max.</td>
<td>0,01</td>
<td>9.3.4</td>
</tr>
<tr>
<td>Obsah látek nerozpustných v acetonu [%], max.</td>
<td>0,10</td>
<td>9.3.5</td>
</tr>
<tr>
<td>Obsah pískovitých částic</td>
<td>Maximálně tři částice (na 50 g vzorku) zachycené na síti s velikostí ok 0,25 mm. Žádná částice zachycená na síti s velikostí ok 0,42 mm</td>
<td>9.3.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Požadovaná hodnota</th>
<th>Metoda zkoušení (viz čl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vakuový stabilitní test při 100 ºC po dobou 48 hodin [ml/g], max.</td>
<td>0,2</td>
<td>9.3.7</td>
</tr>
<tr>
<td>Sítová analýza</td>
<td>Podle požadavku odběratele</td>
<td>9.3.8 nebo 9.3.9 nebo 9.3.10</td>
</tr>
</tbody>
</table>

TABULKA 9 – Typické třídy zrnitosti pentritu

<table>
<thead>
<tr>
<th>Velikost otvoru síta [mm]</th>
<th>Procentuální podíl vzorku procházející daným sítem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Třída 1</td>
</tr>
<tr>
<td>0,800</td>
<td>-</td>
</tr>
<tr>
<td>0,600</td>
<td>-</td>
</tr>
<tr>
<td>0,500</td>
<td>-</td>
</tr>
<tr>
<td>0,315</td>
<td>-</td>
</tr>
<tr>
<td>0,200</td>
<td>-</td>
</tr>
<tr>
<td>0,180</td>
<td>min. 100</td>
</tr>
<tr>
<td>0,150</td>
<td>min. 85</td>
</tr>
<tr>
<td>0,106</td>
<td>max. 55</td>
</tr>
<tr>
<td>0,075</td>
<td>max. 30</td>
</tr>
<tr>
<td>Typické použití</td>
<td>bleskovicí</td>
</tr>
</tbody>
</table>

Na žádost odběratele musí výrobce poskytnout mikrofotografii krystalů pentritu. Zvětšení mikrofotografie musí umožnit zřetelné zobrazení tvaru jednotlivých krystalů (jehličky, kulíčky, nepravidelné krystaly apod.).

Pro účely zkoušek se z každé výrobní série náhodně odebere reprezentativní vzorek o hmotnosti minimálně 200 g postupem odsouhlaseným odběratelem.

Pokud je vzorek vlhký, musí se přesušit v tenké vrstvě v sušárně při teplotě 60 ºC po dobu minimálně 8 hodin.

9.3 Metody zkoušení

9.3.1 Stanovení čistoty pentritu metodou HPLC

9.3.1.1 Princip metody
Chemická čistota vzorku pentritu se stanoví vysokoúčinnou kapalinovou chromatografií (HPLC) s použitím standardního přístroje.

9.3.1.2 Chemikálie a činidla
Acetonitril, o čistotě pro HPLC.
Aceton, o čistotě p.a.
Voda, o čistotě pro HPLC.
Standard pentritu o čistotě větší než 99,5 %.
Vhodný vnitřní standard (např. etylcentralit), o čistotě p.a.

9.3.1.3 Přístroje a zařízení

Vysokoúčinný kapalinový chromatograf (HPLC) vybavený UV detektorem nebo detektorem s diodovým polem (DAD) a integrátorem nebo spojením pro přenos a zpracování dat.

Kolona pro HPLC s obrácenými fázemi (např. RP-8 nebo RP-18).

Injekční filtry 0,45 μm.
Odměrné baňky o objemu 100 ml.

Pipeta.

9.3.1.4 Vzorové podmínky HPLC

Níže uvedené chromatografické podmínky jsou uváděny pouze jako informativní, protože použité konkrétní přístrojové vybavení může vyžadovat specifické podmínky. Zvolené chromatografické podmínky však musí zajistit spolehlivé oddělení základní linie píku pentritu od píků jeho hlavních nečistot (dipentaerythritolhexanitrátu a tripentaerythritoloktanitrátu) a vnitřního standardu.

- Eluční činidlo: acetonitril/voda 60/40.
- Rychlost průtoku: 1,0 ml/min.
- Objem nástřiku: 5 μl.
- Vlnová délka UV detektoru: 230 nm.
- Šířka pásma UV detektoru: 2 nm.
- Ohřev kolony: 35 °C.
- Doba analýzy: 5 min.

9.3.1.5 Postup zkoušky

9.3.1.5.1 Příprava kalibračního standardu pentritu

Jako kalibrační standard se používá pentrit o čistotě vyšší než 99,5 %. Takto čistý pentrit může být připraven frakční rekrystalizací průmyslově vyráběného pentritu z acetonu nebo směsi acetonu a vody. Nečistoty jako dipentaerythritolhexanitrát nebo tripentaerythritoloktanitrát se v těchto rozpouštědlech rozpouští lépe než pentrit. Nečistoty absorbující UV záření musí v takovémto kalibračním standardu představovat méně než 0,5 % celkové plochy píků na chromatogramu (bez započtení píku rozpouštědla).

9.3.1.5.2 Příprava vzorku

Přibližně 40 mg suchého vzorku pentritu a 40 mg vnitřního standardu se s přesností na 0,1 mg naváží do odměrné baňky o objemu 100 ml. Přidá se aceton v množství potřebném k rozpuštění vzorku a vzniklý roztok se doplní acetonem po rysku. Připravený roztok se přefiltruje přes injekční filtr 0,45 μm a dále se používá k nástřiku.
do kolony. Uvedené navážky a objemy jsou pouze doporučené a mohou být upraveny v závislosti na použitých chromatografických podmínkách.

Stejným způsobem se připraví i kalibrační roztok s použitím kalibračního standardu pentritu a vnitřního standardu.

9.3.1.3 Analýza vzorku

Po ustálení chromatografických podmínek a signálu detektoru se provede kalibrace a analýza roztoku vzorku. Nejprve se analyzují tři nástřiky kalibračního roztoku následované třemi nástřiky roztoku vzorku a zakončené opět třemi nástřiky kalibračního roztoku. Mezi nástřiky kalibračních roztoků může být analyzováno maximálně pět vzorků pentritu. Všechny nástřiky musí být provedeny za stejných chromatografických podmínek.

9.3.1.6 Vyhodnocení a uvádění výsledků zkoušky

Pro kvalitativní vyhodnocení analyzovaného vzorku se porovnávají retenční časy píků pentritu ve vzorku a kalibračním roztoku, které by měly být identické. Pro kontrolu chemické identity píku pentritu může být rovněž použita verifikace UV spektra získaného DAD detektorem.

Pro každý ze tří nástřiků kalibračního roztoku a roztoku vzorku se stanoví odpovídající plochy pod píky pod píkem pentritu a vnitřního standardu. Výsledky těchto tří nástříku se pro kalibrační roztok a roztok vzorku zprůměrují. Plochy tří nástříku stejného vzorku se nesmí vzájemně lišit o více než 1 %.

Odezvový faktor RF pro kalibrační roztok pentritu se vypočítá z následujícího vztahu:

$$RF = \frac{w_{P-C} \times A_{IS-C}}{w_{IS-C} \times A_{P-C}}$$

(37),

kde RF - odezvový faktor pro kalibrační roztok pentritu [1],

w_{P-C} - hmotnost čistého pentritu v kalibračním roztoku [g],

w_{IS-C} - hmotnost vnitřního standardu v kalibračním roztoku [g],

A_{P-C} - průměrná plocha píku pentritu ze tří nástřík kalibračního roztoku [mAU·s],

A_{IS-C} - průměrná plocha píku vnitřního standardu ze tří nástřík kalibračního roztoku [mAU·s].

Procentuální obsah pentritu ve vzorku se vypočítá ze vztahu:

$$\% \text{ pentritu} = \frac{A_P \times w_{IS} \times RF \times 100}{A_{IS} \times w}$$

(38),

kde RF - odezvový faktor pro kalibrační roztok pentritu [1],

A_P - průměrná plocha píku pentritu ze tří nástřík roztoku vzorku [mAU·s],

A_{IS} - průměrná plocha píku vnitřního standardu ze tří nástřík roztoku vzorku [mAU·s],

w_{IS} - navážka vnitřního standardu [g],

w - navážka vzorku [g].
9.3.1.7 Příklad chromatogramu

Příklad originálu chromatogramu vzorku pentritu získaného s použitím chromatografických podmínek dle čl. 9.3.1.4 a kolony Hypersil BDS 100 mm × 4 mm (zrno 3 µm) je uveden na obrázku 5.

![OBRÁZEK 5 - Příklad chromatogramu vzorku pentritu s vysokým obsahem nečistot (6 % dipentaerythritolhexanitrátu)](image)

9.3.2 Stanovení bodu tání v kapilární trubičce

9.3.2.1 Princip metody

Metoda je založena na stanovení bodu tání krystalů pentritu vložených do kapilární trubičky. Krystaly v trubičce se zahřívají konstantní rychlostí v termostatu nebo ohřívací láznì a bod tání se detekuje vizuálně nebo opticky jako teplota, při které polovina materiálu přejde do kapalného stavu.

9.3.2.2 Přístroje a zařízení

Přístroj pro stanovení bodu tání umožňující regulaci zahřívání vzorku rychlostí 1 °C/min a vizuální nebo optickou detekci bodu tání.

Kalibrovaný teplotměr pokrývající rozmezí nejméně 130 °C až 145 °C a dělený po 0,1 °C.

Trubičky pro stanovení bodu tání, tenkostěnné a na jednom konci uzavřené. Typické rozměry: vnější průměr 1,8 mm, vnitřní průměr 1,6 mm a délka 90 mm.

9.3.2.3 Postup zkoušky

Do kapilární trubičky se vloží takové množství suchého vzorku, aby se naplnila do výšky 10 mm. Ovládání přístroje se nastaví tak, aby se rychle dosáhla teplota 130 °C.
Rychlost zahřívání vzorku se sníží na 1 °C až 2 °C za minutu a do přístroje se vloží kapilární trubička. Vzorek se umístí vodorovně do vzdálenosti 2 mm až 3 mm od rtuťové nádobky teploměru a svisle do její úrovně.

Zaznamená se bod tání vzorku jako teplota, při které jeho polovina přejde do kapalného stavu. Když se teplota blíží bodu tání, může dojít k poklesu materiálu v trubičce a změně jeho barvy, což však nelze zaměňovat s jeho přeměnou v kapalinu.

9.3.2.4 Vyhodnocení a uvádění výsledků zkoušky

Použijí se všechny nezbytné opravy vzhledem ke kalibrovanému teploměru. Do protokolu se uvede zaznamenaná teplota bodu tání s přesností na 0,1 °C.

9.3.3 Stanovení bodu tání diferenciální snímací kalorimetrií (DSC)

9.3.3.1 Princip metody

DSC měří tepelný tok ze vzorku v závislosti na teplotě udržováním vzorku i referenční látky na stejné teplotě pomocí změny vkládané elektrické energie (zahřívání či ochlazování probíhá lineární rychlostí). Vzorek a referenční látky se vloží do oddělených pouzder a současně se zahřívají regulovanou rychlostí v ustáleném atmosféře. Změna energie (příkonu) se zaznamenává jako funkce teploty. Alternativně může být teplota vzorku a referenční látky zvyšována na předem stanovenou hodnotu a změna energie se zaznamená jako funkce času. Při změně entalpie látky se tato změna projeví jako odklon od původní základní linie teplotního záznamu.

9.3.3.2 Chemikálie a činidlá

Inertní referenční materiál, který nesmí být v použitém teplotním rozsahu tepelně aktivní. Pro většinu aplikací se osvědčil Al₂O₃.

9.3.3.3 Přístroje a zařízení

Přístroj pro DSC s rychlostí ohřevu 5 °C/min a automatickým záznamem diferenciálního tepelného toku mezi vzorkem i referenční látkou se požadovanou citlivostí a shodností. Pro účely srovnání musí být jak pro kalibraci, tak pro analýzu použity stejné rychlosti ohřevu i podmínek prostředí.

Analytické váhy s přesností 0,01 mg.

Pouzdra na vzorky vyrobená z materiálu, který je nejen inertní k případnému výbuchu za podmínek zkoušky, ale má mít i vysokou tepelnou vodivost. Takovým vhodným materiálem je např. hliník, zlato nebo platina.

Zdroj (přívod) plynu pro proplachování. Průtok plynu má v průběhu zkoušky zůstat konstantní. Doporučuje se použít dusík.

9.3.3.4 Postup zkoušky

Vzorky pro zkoušku musí být reprezentativní a připraveny tak, aby byl zajištěn dobrý tepelný kontakt mezi vzorkem i pouzdem.

Zařízení se zkalibruje za stejných podmínek (typu držáku vzorku, rychlosti ohřevu, proplachovacího plynu a rychlosti jeho průtoku), jaké budou použity pro měření vzorku pentritu. Jako materiál pro teplotní kalibraci se doporučuje indium (bod tání 156,6 °C).

Do pouzdra na vzorek se naváží 0,5 mg až 1,0 mg reprezentativního podílu suchého vzorku a pouzdro se uční víčkem tak, aby prostor mezi víčkem a vzorkem byl co nejmenší. Pouzdro se vzorkem se vloží do přístroje, spustí se proplachování měřicí
komory zvoleným průtokem plynu a vzorek se zahřívá rychlostí 5 °C/min na teplotu 150 °C se současným zaznamenáním termogramu. Zkouška se poté zopakuje s dalším reprezentativním podílem vzorku.

9.3.3.5 Vyhodnocení a uvádění výsledků zkoušky

Bod tání vzorku se vyjádří jako teplota onsetu endotermy (příklad na obrázku 6); do protokolu se uvede průměrná hodnota ze dvou stanovení.

![DSC diagram](image)

OBRÁZEK 6 – Příklad stanovení bodu tání pentritu pomocí DSC

9.3.4 Stanovení kyselosti nebo alkality

9.3.4.1 Princíp metody

Stanovení kyselosti nebo alkality pentritu se provádí zpětnou titrací známého množství kyseliny sírové přidané v přebytku k roztoku pentritu. Ke zpětné titraci se používá odměrný roztok hydroxidu sodného a bod ekvivalence se určuje pomocí indikátoru nebo elektrodou na měření pH.

9.3.4.2 Chemikálie a činidla

Aceton, o čistotě p.a.

Odměrný roztok hydroxidu sodného o koncentraci přibližně 0,02 M, standardizovaný před použitím vhodným standardem (např. dihydrátem kyseliny šťavelové).

Odměrný roztok kyseliny sírové o koncentraci přibližně 0,01 M, standardizovaný před použitím vhodným standardem (např. hydrogenuhličitanem sodný).

Indikátor metylčervené/metylenmodré (0,1 g metylčervené a 0,05 g metylenmodré ve 100 ml 95% etanolu).

Destilovaná voda.

Elektrodový roztok (volitelně).

Dva nebo více pufrů se známým pH (volitelné).

9.3.4.3 Přístroje a zařízení
Odměrný válec o objemu 50 ml.

Semi-mikrobyreta o objemu 5 ml, dělená po 0,02 ml.

Pipeta o objemu 5 ml.

Kádinka o objemu 250 ml.

pH-metr nebo automatický titrátor s odpovídajícími konektory (volitelné).

Kombinovaná elektroda na měření pH.

9.3.4.4 Postup zkoušky

Suchý pentrit o hmotnosti (10 ± 0,01) g se rozpustí v 50 ml acetonu v 250 ml kádince.

Přidají se přesně 2 ml odměrného roztoku 0,01 M kyseliny sírové, vše se dobře promísí a nechá stát po dobu jedné hodiny.

Do roztoku se poté přidá několik kapek indikátoru a přebytek kyseliny se zpětně titruje přidáváním odměrného roztoku 0,02 M hydroxidu sodného ze semi-mikrobyrety za stálého míchání až do dosažení bodu ekvivalence, kdy se barva indikátoru změní z fialové na zelenou. Zaznamená se spotřeba odměrného roztoku hydroxidu sodného V_1.

Alternativně může být bod ekvivalence stanoven s použitím elektrody na měření pH. Stanovení se provádí v souladu s návodem k použití elektrody a postupem kalibrace a analýzy předepsaným výrobci elektrody. Ze semi-mikrobyrety se přidává odměrný roztok v dávkách po 0,02 ml a po každém přidání se odečte odpovídající napětí [mV] měřené elektrody.

Za stejných podmínek jako uvedený postup se provádí i analýza slepého vzorku s použitím 50 ml acetonu a 2 ml 0,01 M kyseliny sírové. Spotřeba odměrného roztoku pro dosažení bodu ekvivalence při slepém stanovení se označí jako V_2.

9.3.4.5 Výpočet a uvádění výsledků zkoušky

Jestliže platí vztah $V_1 < V_2$, pak je vzorek alkalický. Alkalita pentritu, vyjádřená procentuálním obsahem uhličitanu sodného ve vzorku, se vypočítá ze vztahu:

$$
\% \text{ alkality (jako Na}_2\text{CO}_3) = \frac{5,3 \times c_{\text{NaOH}} \times (V_2 - V_1)}{w}
$$

(39),

kde V_1 - objem odměrného roztoku spotřebovaného při titraci vzorku [ml],
V_2 - objem odměrného roztoku spotřebovaného při slepém stanovení [ml],
c_{NaOH} - koncentrace odměrného roztoku NaOH [mol/l],
w - navážka vzorku [g].

Pokud platí vztah $V_1 > V_2$, pak je vzorek kyselý. Kyselost pentritu, vyjádřená procentuálním obsahem kyseliny dusičné ve vzorku, se vypočítá ze vztahu:

60
% kyselosti (jako HNO₃) = \frac{6,3 \times c_{NaOH} \times (V_1 - V_2)}{w} \tag{40},

kde
\begin{align*}
V_1 & \quad \text{objem odměrného roztoku spotřebovaného při titraci vzorku [ml]}, \\
V_2 & \quad \text{objem odměrného roztoku spotřebovaného při slepém stanovení [ml]}, \\
c_{NaOH} & \quad \text{koncentrace odměrného roztoku NaOH [mol/l]}, \\
w & \quad \text{navážka vzorku [g]}.
\end{align*}

9.3.5 Stanovení obsahu látek nerozpustných v acetonu

9.3.5.1 Chemikálie a činidla
Aceton, o čistotě p.a.

9.3.5.2 Přístroje a zařízení
Odměrný válce o objemu 250 ml.
Topná deska nebo parní lázeň.
Goochův kelímek o pórovitosti D3, případně filtrační kelímek se skleněnou fritou o ekvivalentní pórovitosti.
Sušárna.
Exsikátor naplněný bezvodým chloridem vápenatým.
Analytické váhy o přesnosti 0,001 g.

9.3.5.3 Postup zkoušky
Vzorek o hmotnosti (50 ± 0,01) g se rozpustí v 250 ml mírně vručního acetonu na elektrickém vařiči nebo parní lázni. Roztok se kompletně, včetně suspendovaných částic, přefiltruje přes zvážený Goochův nebo filtrační kelímek tak, aby se všechny částice dostaly do kelímku. Ten se pak důkladně promyje horkým acetonem a suší v sušárně při teplotě (100 ± 2) °C po dobu dvou hodin. Následně se frita chladí jednu hodinu v exsikátoru a opakovaně se zváží.

9.3.5.4 Výpočet a uvádění výsledků zkoušky
Procentuální obsah látek nerozpustných v acetonu se vypočítá ze vztahu:
\[
\% \text{látek nerozpustných v acetonu} = \left(\frac{W_2 - W_1}{W} \right) \times 100 \tag{41},
\]

kde
\begin{align*}
W_1 & \quad \text{hmotnost prázdného kelímku [g]}, \\
W_2 & \quad \text{hmotnost kelímku s nerozpustěnými látkami [g]}, \\
W & \quad \text{navážka vzorku [g]}.
\end{align*}

9.3.6 Stanovení obsahu pískovitých částic

9.3.6.1 Princip metody
Stanovením obsahu pískovitých částic se zjišťuje počet ostrohranných částic ve vzorku pentritu, které se zachytí na sítech o velikosti ok 0,25 mm a 0,42 mm.
9.3.6.2 Chemikálie a činidla
Aceton, o čistotě p.a.

9.3.6.3 Přístroje a zařízení
Soxhletův extraktor nebo jiný vhodný typ extraktoru.
Parní lázeň nebo jiný vhodný systém ohřevu.
Síta o velikosti ok 0,25 mm a 0,42 mm.
Analytické váhy o přesnosti 0,001 g.

9.3.6.4 Postup zkoušky
Vzorek pentritu o hmotnosti (50 ± 0,01) g se nasypé na síto o velikosti ok 0,25 mm a síto se vzorkem se vloží do extraktoru. Do zásobní baňky extraktoru se přidá dostatečné množství acetonu a provede se extrakce na parní lázní až do rozpuštění veškerého pentritu na sítu.
Po rozpuštění pentritu se síto vyjme a spočítají se všechny nerozpuštěné částice. Částice se poté ze síta o velikosti ok 0,25 mm opatrně smetou na síto o velikosti ok 0,42 mm a síto se počítá částic zůstávajících na tomto síť. Přitom se zkoumá, zda mají částice pískovitý charakter, především jestli vydávají skřípavý zvuk při tření hladkou ocelovou špachtlí na hladké skleněné destičce.

9.3.6.5 Vyhodnocení a uvádění výsledků zkoušky
Do protokolu se uvedou počty pískovitých částic zachycených na sítech o velikosti ok 0,25 mm a 0,42 mm.

9.3.7 Vakuový stabilitní test
9.3.7.1 Princip metody
Vakuovým stabilitním testem se ve vzorku pentritu stanovuje přítomnost destabilizujících nečistot. Stanovení se provádí zahříváním vzorku pentritu po určenou dobu v odsáté zkumavce, udržované na určené konstantní teplotě, a měřením objemu uvolněných rozkladných plynů.

9.3.7.2 Přístroje a zařízení
Aparatura popsána v ČOS 137601, čl. 6.4 nebo ve STANAG 4556.

9.3.7.3 Postup zkoušky
Kalibrace aparatury a samotná zkouška se provede se suchým pentritem v souladu s ČOS 137601, čl. 6.4 nebo STANAG 4556 za níže uvedených podmínek.

Hmotnost vzorku: 1 g.
Teplota: 100 °C.
Doba zahřívání: 48 hodin.

9.3.7.4 Vyhodnocení a uvádění výsledků zkoušky
Vyhodnocení množství uvolněných plynů se provede v souladu s ČOS 137601, čl. 6.4 nebo STANAG 4556. Výsledek se uveďe jako průměrná hodnota objemu plynů získaná z minimálně dvou stanovení.
9.3.8 Stanovení zrnitosti sílovou analýzou za mokra

9.3.8.1 Princip metody
Zrnitost se stanoví proséváním vzorku pentritu za použití proudu vody a sady specifikovaných sít.

9.3.8.2 Chemikálie a činidla
Dvouprocentní roztok povrchově aktivní látky (např. dioktylsulfosukcinátu sodného).

9.3.8.3 Přístroje a zařízení
Sada sít o velikosti ok odpovídajícím požadavkům odběratele na granulometrii pentritu (viz čl. 9.2 a tabulka 9), s průměrem síta minimálně 150 mm.

Analytické váhy o přesnosti 10 mg.
Sušárna.
Kádinka o objemu 600 ml.
Střička.

9.3.8.4 Postup zkoušky
Každé použité síto se před stanovením vysuší při teplotě 60 °C po dobu 8 hodin a zjistí se jeho hmotnost.

Naváží se (50 ± 0,05) g suchého pentritu, nasype se do 600 ml kádinky obsahující přibližně 300 ml 2% roztoku vhodné povrchově aktivní látky a pomocí skleněné tyčinky s pryžovým návlekom se suspenze několik minut důkladně míchá pro rozrušení co největšího počtu aglomerátů (hrudek). Ty se však nesmí rozbíjet, pokud je stanovení jejich obsahu požadováno odběratelem pentritu.

Sestaví se sada určených sít v pořadí s klesající velikosti ok odshora dolů (s nejhrubším sítem na hoře) a umístí se poblíž přívodu vody. Pomocí sprchovací růžice připojené na přívod vody se suspenze pentritu v roztoku povrchově aktivní látky kvantitativně převede na horní síto. Celou operaci je zapotřebí provádět a zabezpečit tak, aby se pentrit nemohl dostat do odpadu ve výlevce.

Tlak vody ve sprchovací růžici se nastaví tak, aby při působení proudu vody na síť v kolmém směru ze vzdálenosti přibližně 50 mm až 75 mm bylo možno pohybovat vzorkem po celé ploše síta bez rozstřikování vzorku přes okraje síta. Proudem vody by mělo být pohybováno tak rychle, aby proudivá voda prošla průměrem síta jednou až dvakrát za sekundu.

Vlhké aglomeráty na horním síť se zlehka rozmělňují pomocí skleněné tyčinky s pryžovým návlekiem a pokračuje se v promývání materiálu na horním síť až do okamžiku, kdy na síť zůstávají jen jednotlivé krystaly větší než oka síta (pokud není odběratelem požadováno zachování a kvantifikace aglomerátů).

Odstraní se horní síto, k materiálu na dalším síť se přidá několik kapek dvouprocentního roztoku povrchově aktivní látky, a promývá se až do doby, kdy nejsou pozorovány žádné změny množství materiálu na síť. Tento postup se opakuje u všech sít.
Síta ze zbylým materiálem se suší 8 hodin v sušárně nastavené na 60 °C, pak se nechají vychladit v exsikátoru a zváží se. Stanoví se čistá hmotnost materiálu zbylého na každém síť.

9.3.8.5 Výpočet a uvádění výsledků zkoušky

Vypočítá se procentuální podíl vzorku pentritu procházející jednotlivými síty. Pro sadu n síť, kde s1 je horní síto a s_n spodní síto, platí vztah:

\[\% \text{ vzorku prošlého sítem } s_i = \left(\frac{W - \sum_{i=1}^{n} w_i}{W} \right) \times 100 \] (42),

kde \(W \) - celková navážka vzorku pentritu [g],
\(w_i \) - hmotnost pentritu zachyceného na i-ťém síť [g],
\(n \) - celkový počet sít [1].

9.3.9 Stanovení zrnitosti akustickou sítovou analýzou

9.3.9.1 Princip metody

Vzorek se buď v suchém stavu nebo zvlhčený antistatickým prostředkem prosévá na sadě síť.

9.3.9.2 Chemikálie a činidla

Antistatický roztok připravený jako 0,1% roztok neiontové povrchově aktivní látky v deionizované vodě.

Antistatické utěrky nebo aerosolové spreje pro úpravu sady síť a/nebo vnitřku akustické prosévačky.

9.3.9.3 Přístroje a zařízení

Akustická prosévačka (nebo ekvivalentní zařízení) s diafragmou, distančními vložkami, horní násypkou a sběračem jemných prachových částic.

Sada síť o velikosti ok odpovídající požadavkům odběratele na granulometrii pentritu (viz čl. 9.2 a tabulka 9), s průměrem síta minimálně 150 mm.

Analytické váhy o přesnosti 0,1 mg.

Štětec s tuhými štětinami.

9.3.9.4 Postup zkoušky

K prosévání se použije vzorek suchého pentritu o hmotnosti přibližně 2 g až 10 g. Vzorky, které na sobě po vysušení kumulují elektrostatický náboj, mohou být ošetřeny zředěným vodním roztokem antistatického prostředku a poté vysušeny do konstantní hmotnosti.

Každé síto a každá sběrná miska prosévačky se předem samostatně zváží, poskládají se do sestavy dle velikosti nejhrubším sítem nahoru, vzorek se nasypne na horní síto a sada síť se vloží do akustické prosévačky. Režim prosévačky (druh pulzů) se nastaví na vhodnou amplitudu, odpovídající minimální úrovní amplitudy, při níž krystalky vzorku poskakují na horním sítu. Doba prosévání se nastaví na 4 minuty. Po ukončení prosévání se opětovně zváží každé síto a každá sběrná miska.
9.3.9.5 Výpočet a uvádění výsledků zkoušky

Výpočítá se procentuální podíl vzorku pentritu procházející jednotlivými sítě. Pro sadu \(n\) sít, kde \(s_1\) je horní síto a \(s_n\) spodní síto, platí vztah:

\[
\% \text{ vzorku prošlého sítem } s_i = \left(\frac{W - \sum_{i=1}^{n} w_i}{W} \right) \times 100
\]

(43),

kde
- \(W\) - celková navážka vzorku pentritu [g],
- \(w_i\) - hmotnost pentritu zachyceného na \(i\)-tém síť [g],
- \(n\) - celkový počet sít [1].

9.3.10 Stanovení zrnitosti metodou LALLS

9.3.10.1 Princip metody

Rozdělení velikosti částic vzorku pentritu může být stanoveno s použitím komerčně dostupného přístroje využívajícího metody LALLS založené na měření rozptylu usměrňovaného paprsku laserového světla na částicích v suspenzi, kdy úhel tohoto rozptylu závisí na velikosti částic.

9.3.10.2 Chemikálie a činidlá

Vhodná disperzní kapalina pro LALLS, v níž je pentrit nerozpustný.

9.3.10.3 Přístroje a zařízení

LALLS spektrometr.

9.3.10.4 Postup zkoušky

Stanovení se provádí v souladu s návodem k použití daného přístroje pro LALLS.

9.3.10.5 Vyhodnocení a uvádění výsledků zkoušky

Analyzuje se grafické znázornění objemového rozdělení, tj. průměr částic vs. objemové procento nebo kumulativní objemové procento částic zachycených na ekvivalentním sítu. Výsledek se uvádí jako procentuální podíl vzorku procházejícího určeným sítem (viz čl. 9.2 a tabulka 9). Dále se stanoví průměr částic [µm] odpovídající kumulativnímu průchodu 10 obj. %, 50 obj. % a 90 obj. % částic.

K protokolu o zkoušce má být připojena technická specifikace přístroje a podmínky zkoušky.
(VOLNÁ STRANA)
(VOLNÁ STRANA)
Účinnost českého obranného standardu od: **2. června 2017**

Změny:

<table>
<thead>
<tr>
<th>Změna číslo</th>
<th>Účinnost od</th>
<th>Změnu zapracoval</th>
<th>Datum zapracování</th>
<th>Poznámka</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upozornění: Oznámení o českých obranných standardech jsou uveřejňována měsíčně ve Věstníku Úřadu pro technickou normalizaci, metrologii a státní zkušebnictví v oddíle „Ostatní oznámení“ a Věstníku MO.

V případě zjištění nesrovnalostí v textu tohoto ČOS zasílejte připomínky na adresu distributora.

Rok vydání: 2017, obsahuje 34 listů
Tisk: Ministerstvo obrany ČR
Distribuce: Odbor obranné standardizace Úř OSK SOJ, nám. Svobody 471, 160 01 Praha 6
Vydal: Úřad pro obrannou standardizaci, katalogizaci a státní ověřování jakosti, www.oos.army.cz

NEPRODEJNÉ